On Third Geometric-Arithmetic Index of Graphs

نویسندگان

  • B. FURTULA University of Kragujevac, Serbia
  • I. GUTMAN University of Kragujevac, Serbia
  • K. DAS Sungkyunkwan University, Republic of Korea
چکیده مقاله:

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on third geometric-arithmetic index of graphs

continuing the work k. c. das, i. gutman, b. furtula, on second geometric-arithmetic indexof graphs, iran. j. math chem., 1(2) (2010) 17-28, in this paper we present lower and upperbounds on the third geometric-arithmetic index ga3 and characterize the extremal graphs.moreover, we give nordhaus-gaddum-type result for ga3.

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

on second geometric-arithmetic index of graphs

the concept of geometric-arithmetic indices (ga) was put forward in chemical graph theoryvery recently. in spite of this, several works have already appeared dealing with these indices.in this paper we present lower and upper bounds on the second geometric-arithmetic index(ga2) and characterize the extremal graphs. moreover, we establish nordhaus-gaddum-typeresults for ga2.

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

On Second Geometric−Arithmetic Index of Graphs

The concept of geometric−arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric−arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus−Gaddum−type results for GA2.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره Issue 2 (Special Issue Dedicated to the Pioneering Role of Ivan Gutman In Mathematical Chemistry)

صفحات  29- 36

تاریخ انتشار 2010-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023