On the real quadratic fields with certain continued fraction expansions and fundamental units
نویسندگان
چکیده مقاله:
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d$ Yokoi's $d$-invariants by reference to continued fraction expansion of integral basis element where $ell left({d}right)$ is a period length. Moreover, we mention class number for such fields. Also, we give some numerical results concluded in the tables.
منابع مشابه
Transcendence of certain k-ary continued fraction expansions
Let ξ ∈ (0, 1) be an irrational with aperiodic continued fraction expansion: ξ = [0; u0, u1, u2, . . .], and suppose the sequence (un)n≥0 of partial quotients takes only values from the finite set {a1, a2, . . . , ak} with 1 ≤ a1 < a2 < · · · < ak, k ≥ 2. We prove that if the frequency of a1 (or ak) in (un)n≥0 is at least 1/2, and (un)n≥0 begins with arbitrarily long blocks that are almost squa...
متن کاملClosed Form Continued Fraction Expansions of Special Quadratic Irrationals
We explore methods for determining the underlying structure of certain classes of continued fractions . The goal is to develop closed form expressions for the continued fractions of many quadratic irrationals. Consider a finite difference equation satisfying: • Gn+1 = anGn + bnGn−1. • an = m, and bn = l for all n, where m, l ∈ N note: m = l = 1 gives the Fibonacci numbers. Let Gn denote the n t...
متن کاملElliptic units for real quadratic fields
1. A review of the classical setting 2. Elliptic units for real quadratic fields 2.1. p-adic measures 2.2. Double integrals 2.3. Splitting a two-cocycle 2.4. The main conjecture 2.5. Modular symbols and Dedekind sums 2.6. Measures and the Bruhat-Tits tree 2.7. Indefinite integrals 2.8. The action of complex conjugation and of Up 3. Special values of zeta functions 3.1. The zeta function 3.2. Va...
متن کاملQuadratic Residue Covers for Certain Real Quadratic Fields
Let A„{a, b) = {ban+(a-l)/b)2+4an with n > 1 and ¿>|a-l . If W is a finite set of primes such that for each n > 1 there exists some q £W for which the Legendre symbol {A„{a, b)/q) ^ -1 , we call <£ a quadratic residue cover (QRC) for the quadratic fields K„{a, b) = Q{^jA„{a, b)). It is shown how the existence of a QRC for any a, b can be used to determine lower bounds on the class number of K„{...
متن کامل= y 6 = 1 〉 on certain real quadratic fields
Let C ′ = C ∪ {∞} be the extended complex plane and M = 〈 x, y : x = y = 1 〉 , where x(z) = −1 3z and y(z) = −1 3(z+1) are the linear fractional transformations from C ′ → C ′ . Let m be a squarefree positive integer. Then Q∗( √ n) = { √ n c : a, c 6= 0, b = a 2−n c ∈ Z and (a, b, c) = 1} where n = km, is a proper subset of Q(√m) for all k ∈ N . For non-square n = 3 ri=1 pi i , it was proved in...
متن کاملPolynomial Solutions to Pell’s Equation and Fundamental Units in Real Quadratic Fields
Finding polynomial solutions to Pell’s equation is of interest as such solutions sometimes allow the fundamental units to be determined in an infinite class of real quadratic fields. In this paper, for each triple of positive integers (c, h, f) satisfying c − f h = 1, where (c, h) are the smallest pair of integers satisfying this equation, several sets of polynomials (c(t), h(t), f(t)) which sa...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات 197- 208
تاریخ انتشار 2017-06-24
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023