On the commuting graph of some non-commutative rings with unity

نویسندگان

  • E. Vatandoost Department of Basic science , Imam Khomeini International University, Qazvin, Iran
  • F. Ramezani Department of Basic science , Imam Khomeini International University, Qazvin, Iran
چکیده مقاله:

‎‎Let $R$ be a non-commutative ring with unity‎. ‎The commuting graph‎ of $R$ denoted by $Gamma(R)$‎, ‎is a graph with a vertex set‎ ‎$Rsetminus Z(R)$ and two vertices $a$ and $b$ are adjacent if and only if‎ $ab=ba$‎. ‎In this paper‎, ‎we investigate non-commutative rings with unity of order $p^n$ where $p$ is prime and $n in lbrace 4,5 rbrace$‎. It is shown that‎, ‎$Gamma(R)$ is the disjoint union of complete graphs‎. Finally‎, ‎we prove that there are exactly five commuting‎ ‎graphs of non-commutative rings with unity up to twenty vertices and they are $3K_2,3K_4,7K_2‎, ‎K_2 cup 2K_6$ and $4K_2 cup K_6$‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the commuting graph of some non-commutative rings with unity

‎‎let r be a non-commutative ring with unity‎. ‎the commuting graph‎ ‎of $r$ denoted by $gamma(r)$‎, ‎is a graph with a vertex set‎ ‎$rsetminus z(r)$ and two vertices $a$ and $b$ are adjacent if and only if‎ ‎$ab=ba$‎. ‎in this paper‎, ‎we investigate non-commutative rings with unity of order $p^n$ where $p$ is prime and $n in lbrace 4,5 rbrace$‎. it is shown that‎, ‎$gamma(r)$ is the disjoint ...

متن کامل

On the commuting graph of non-commutative rings of order $p^nq$

Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with vertex set $RZ(R)$ and two vertices $a$ and $b$ are adjacent iff $ab=ba$. In this paper, we consider the commuting graph of non-commutative rings of order pq and $p^2q$ with Z(R) = 0 and non-commutative rings with unity of order $p^3q$. It is proved that $C_R(a)$ is a commutative ring...

متن کامل

Exact annihilating-ideal graph of commutative rings

The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.

متن کامل

A note on comaximal graph of non-commutative rings

Let R be a ring with unity. The graph Γ(R) is a graph with vertices as elements of R, where two distinct vertices a and b are adjacent if and only if Ra + Rb = R. Let Γ2(R) is the subgraph of Γ(R) induced by the non-unit elements. H.R. Maimani et al. [H.R. Maimani et al., Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801-1808] proved that: “If R is a commutative ring with unity a...

متن کامل

On quasi-zero divisor graphs of non-commutative rings

Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...

متن کامل

Directed prime graph of non-commutative ring

Prime graph of a ring R is a graph whose vertex set is the whole set R any any two elements $x$ and $y$ of $R$ are adjacent in the graph if and only if $xRy = 0$ or $yRx = 0$.  Prime graph of a ring is denoted by $PG(R)$. Directed prime graphs for non-commutative rings and connectivity in the graph are studied in the present paper. The diameter and girth of this graph are also studied in the pa...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 05  شماره 04

صفحات  289- 294

تاریخ انتشار 2016-01-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023