ON INTERRELATIONSHIPS BETWEEN FUZZY METRIC STRUCTURES
نویسندگان
چکیده مقاله:
Considering the increasing interest in fuzzy theory and possible applications,the concept of fuzzy metric space concept has been introduced by severalauthors from different perspectives. This paper interprets the theory in termsof metrics evaluated on fuzzy numbers and defines a strong Hausdorff topology.We study interrelationships between this theory and other fuzzy theories suchas intuitionistic fuzzy metric spaces, Kramosil and Michalek's spaces, Kalevaand Seikkala's spaces, probabilistic metric spaces, probabilisticmetric co-spaces, Menger spaces and intuitionistic probabilistic metricspaces, determining their position in the framework of theses different theories.
منابع مشابه
On Interrelationships between Fuzzy Metric Structures
Considering the increasing interest in fuzzy theory and possible applications, the concept of fuzzy metric space concept has been introduced by several authors from different perspectives. This paper interprets the theory in terms of metrics evaluated on fuzzy numbers and defines a strong Hausdorff topology. We study interrelationships between this theory and other fuzzy theories such as intuit...
متن کاملon interrelationships between fuzzy metric structures
considering the increasing interest in fuzzy theory and possible applications,the concept of fuzzy metric space concept has been introduced by severalauthors from different perspectives. this paper interprets the theory in termsof metrics evaluated on fuzzy numbers and defines a strong hausdorff topology.we study interrelationships between this theory and other fuzzy theories suchas intuitionis...
متن کاملOn metric spaces induced by fuzzy metric spaces
For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm, we present a method to construct a metric on a fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space. Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...
متن کاملOn Intuitionistic Fuzzy Metric Neighbourhoods
The concept of an intuitionistic fuzzy neighbourhood is introduced. This notion turns out to be more sensitive to variations in the different points of the universe compared to the standard neighbourhood definition of metric space. We apply the intuitionistic fuzzy neighbourhood to the extended modal operators, defined over intuitionistic fuzzy sets.
متن کاملON SOME STRUCTURES OF FUZZY NUMBERS
The operations in the set of fuzzy numbers are usually obtained bythe Zadeh extension principle. But these definitions can have some disadvantagesfor the applications both by an algebraic point of view and by practicalaspects. In fact the Zadeh multiplication is not distributive with respect tothe addition, the shape of fuzzy numbers is not preserved by multiplication,the indeterminateness of t...
متن کاملOn aggregation of metric structures: the extended quasi-metric case
In 1981, J. Borsı́k and J. Doboš studied and solved the problem of how to merge, by means of a function, a (not necessarily finite) collection of metrics in order to obtain a single one as output. Later on, in 2010, G. Mayor and O. Valero proposed and solved the Borsı́k and Doboš problem in the context of quasi-metrics. In this paper, we focus our attention on the aggregation problem for the case...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 2
صفحات 133- 150
تاریخ انتشار 2013-04-29
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023