ON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

نویسندگان

  • Maryam Jahangiri Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran AND Institute for Research in Fundamental Sciences (IPM) P.O.Box: 19395- 5746, Tehran, Iran.
  • Zohreh Habibbi Department of Mathematics, University of Payame Noor, P.O.Box 19395-3697, Tehran, Iran.
چکیده مقاله:

Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^{i}_{R_{+},J}(M)_{n}$.Also, we study the Artinian property and tameness of certainsubmodules and quotient modules of $H^{i}_{R_{+},J}(M)$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serre Subcategories and Local Cohomology Modules with Respect to a Pair of Ideals

This paper is concerned with the relation between local cohomology modules defined by a pair of ideals and the Serre subcategories of the category of modules. We characterize the membership of local cohomology modules in a certain Serre subcategory from lower range or upper range.

متن کامل

Local Cohomology Based on a Nonclosed Support Defined by a Pair of Ideals

We introduce an idea for generalization of a local cohomology module, which we call a local cohomology module with respect to a pair of ideals (I, J), and study their various properties. Some vanishing and nonvanishing theorems are given for this generalized version of local cohomology. We also discuss its connection with the ordinary local cohomology.

متن کامل

On formal local cohomology modules with respect to a pair of ideals

We introduce a generalization of formal local cohomology module, which we call a formal local cohomology module with respect to a pair of ideals and study its various properties. We analyze their structure, the upper and lower vanishing and non-vanishing. There are various exact sequences concerning the formal cohomology modules. Among them a MayerVietoris sequence for two ideals with respect t...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 2

صفحات  133- 146

تاریخ انتشار 2015-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023