On ev-degree and ve-degree topological indices

نویسندگان

  • B. Sahin Faculty of Science, Selçuk University, Konya, Turkey
  • S. Ediz Faculty of Education, Yuzuncu Yil University, Van, Turkey
چکیده مقاله:

Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we define the ve-degree and ev-degree Narumi–Katayama indices, investigate the predicting power of these novel indices and extremal graphs with respect to these novel topological indices. Also we give some basic mathematical properties of ev-degree and ve-degree NarumiKatayama and Zagreb indices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Some Physicochemical Properties of Octane Isomers: A Topological Approach Using ev-Degree and ve-Degree Zagreb Indices

Topological indices have important role in theoretical chemistry for QSPR researches. Among the all topological indices the Randić and the Zagreb indices have been used more considerably than any other topological indices in chemical and mathematical literature. Most of the topological indices as in the Randić and the Zagreb indices are based on the degrees of the vertices of a connected graph....

متن کامل

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

m-polynomial and degree-based topological indices

let $g$ be a graph and let $m_{ij}(g)$, $i,jge 1$, be the number of edges $uv$ of $g$ such that ${d_v(g), d_u(g)} = {i,j}$. the {em $m$-polynomial} of $g$ is introduced with $displaystyle{m(g;x,y) = sum_{ile j} m_{ij}(g)x^iy^j}$. it is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

M-Polynomial and Degree-Based Topological Indices

Let G be a graph and let mij(G), i, j ≥ 1, be the number of edges uv of G such that {dv(G), du(G)} = {i, j}. TheM -polynomial ofG is introduced withM(G;x, y) = ∑ i≤j mij(G)x y . It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular case to the single problem of determining the M -polyn...

متن کامل

Extremal problems for degree-based topological indices

For a graph G, let σ(G) = ∑ uv∈E(G) 1 √ dG(u)+dG(v) ; this defines the sum-connectivity index σ(G). More generally, given a positive function t, the edge-weight t-index t(G) is given by t(G) = ∑ uv∈E(G) t(ω(uv)), where ω(uv) = dG(u) + dG(v). We consider extremal problems for the t-index over various families of graphs. The sum-connectivity index satisfies the conditions imposed on t in each ext...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 4

صفحات  263- 277

تاریخ انتشار 2018-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023