On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

نویسنده

  • M. Rashidi-Kouchi Young Researchers and Elite Club Kahnooj Branch, Islamic Azad University, Kerman, Iran
چکیده مقاله:

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be again a g-Riesz basis. We nd a situation for a g-Riesz basis to have unique dual g-Riesz basis. Also, we show that every modular g-Riesz basis is a g-Riesz basis in Hilbert C*-module but the opposite implication is not true.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on duality of modular g-riesz bases and g-riesz bases in hilbert c*-modules

in this paper, we investigate duality of modular g-riesz bases and g-riesz basesin hilbert c*-modules. first we give some characterization of g-riesz bases in hilbert c*-modules, by using properties of operator theory. next, we characterize the duals of a giveng-riesz basis in hilbert c*-module. in addition, we obtain sucient and necessary conditionfor a dual of a g-riesz basis to be again a g...

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

g-frames, g-orthonormal bases and g-riesz bases

g-frames in hilbert spaces are a redundant set of operators which yield a repre-sentation for each vector in the space. in this paper we investigate the connection betweeng-frames, g-orthonormal bases and g-riesz bases. we show that a family of bounded opera-tors is a g-bessel sequences if and only if the gram matrix associated to its de nes a boundedoperator.

متن کامل

G–frames and G–Riesz Bases

Abstract G-frames are generalized frames which include ordinary frames, bounded invertible linear operators, as well as many recent generalizations of frames, e.g., bounded quasi-projectors and frames of subspaces. G-frames are natural generalizations of frames and provide more choices on analyzing functions from frame expansion coefficients. We give characterizations of g-frames and prove that...

متن کامل

New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 04  شماره 01

صفحات  53- 63

تاریخ انتشار 2015-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023