On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

نویسندگان

  • A. Alhevaz Shahrood University of Technology, Shahrood , Iran
چکیده مقاله:

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in V(G)}[1+D-d_G(u, v)]$. Let $CT(G)=diag[CT_G(v_1), CT_G(v_2), ldots, CT_G(v_n)]$. The complementary distance signless Laplacian matrix of $G$ is $CDL^+(G)=CT(G)+CD(G)$. If $rho_1, rho_2, ldots, rho_n$ are the eigenvalues of $CDL^+(G)$ then the complementary distance signless Laplacian energy of $G$ is defined as $E_{CDL^+}(G)=sum_{i=1}^{n}left| rho_i-frac{1}{n}sum_{j=1}^{n}CT_G(v_j)right|$. noindent In this paper we obtain the bounds for the largest eigenvalue of $CDL^+(G)$. Further we determine Nordhaus-Gaddum type results for the largest eigenvalue. In the sequel we establish the bounds for the complementary distance signless Laplacian energy.}

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

The Randić index and signless Laplacian spectral radius of graphs

Given a connected graph G, the Randić index R(G) is the sum of 1 √ d(u)d(v) over all edges {u, v} of G, where d(u) and d(v) are the degree of vertices u and v respectively. Let q(G) be the largest eigenvalue of the singless Laplacian matrix of G and n = |V (G)|. Hansen and Lucas (2010) made the following conjecture:

متن کامل

On the distance signless Laplacian spectral radius of graphs and digraphs

Let η(G) denote the distance signless Laplacian spectral radius of a connected graph G. In this paper, bounds for the distance signless Laplacian spectral radius of connected graphs are given, and the extremal graph with the minimal distance signless Laplacian spectral radius among the graphs with given vertex connectivity and minimum degree is determined. Furthermore, the digraph that minimize...

متن کامل

Some results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs

Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

On the Signless Laplacian Spectral Radius of Cacti

A cactus is a connected graph in which any two cycles have at most one vertex in common. We determine the unique graphs with maximum signless Laplacian spectral radius in the class of cacti with given number of cycles (cut edges, respectively) as well as in the class of cacti with perfect matchings and given number of cycles.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 14  شماره 2

صفحات  105- 125

تاریخ انتشار 2019-10

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023