On categories of merotopic, nearness, and filter algebras
نویسنده
چکیده مقاله:
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the category of filters has a left adjoint.
منابع مشابه
on categories of merotopic, nearness, and filter algebras
we study algebraic properties of categories of merotopic, nearness, and filter algebras. we show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. the forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کاملCLUSTER ALGEBRAS AND CLUSTER CATEGORIES
These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولcluster algebras and cluster categories
these are notes from introductory survey lectures given at the institute for studies in theoretical physics and mathematics (ipm), teheran, in 2008 and 2010. we present the definition and the fundamental properties of fomin-zelevinsky’s cluster algebras. then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generators of ...
متن کاملOn Triangulated Categories and Enveloping Algebras
By using the approach to Hall algebras arising in homologically finite triangulated categories in [9], we find an “almost” associative multiplication structure for indecomposable objects in a 2-period triangulated category. As an application, we give a new proof of the theorem of Peng and Xiao in [6] which provides a way of constructing all symmetrizable Kac-Moody Lie algebras from two periodic...
متن کاملGroup Actions on Algebras and Module Categories
Let k be a field and A a finite dimensional (associative with 1) k-algebra. By modA we denote the category of finite dimensional left A-modules. In many important situations we may suppose that A is presented as a quiver with relations (Q, I) (e.g. if k is algebraically closed, then A is Morita equivalent to kQ/I). We recall that if A is presented by (Q, I), then Q is a finite quiver and I is a...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 05 شماره 02
صفحات 111- 118
تاریخ انتشار 2016-08-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023