On Barycentric-Magic Graphs

نویسنده

چکیده مقاله:

Let $A$ be an abelian group. A graph $G=(V,E)$ is said to be $A$-barycentric-magic if there exists a labeling $l:E(G)longrightarrow Asetminuslbrace{0}rbrace$ such that the induced vertex set labeling $l^{+}:V(G)longrightarrow A$ defined by $l^{+}(v)=sum_{uvin E(G)}l(uv)$ is a constant map and also satisfies that $l^{+}(v)=deg(v)l(u_{v}v)$ for all $v in V$, and for some vertex $u_{v}$ adjacent to $v$. In this paper we determine all $hinmathbb{N}$ for which a given graph G is $mathbb{Z}_{h}$-barycentric-magic and characterize $mathbb{Z}_{h}$-barycentric-magic labeling for some graphs containing vertices of degree 2 and 3.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On magic graphs

A (p, q)-graph G = (V, E) is said to be magic if there exists a bijection f : V ∪ E → {1, 2, 3, . . . , p + q} such that for all edges uv of G, f(u) + f(v) + f(uv) is a constant. The minimum of all constants say, m(G), where the minimum is taken over all such bijections of a magic graph G, is called the magic strength of G. In this paper we define the maximum of all constants say, M(G), analogo...

متن کامل

On the V4-magic Graphs

For any abelian group A, a graph G = (V, E) is said to be A-magic if there exists a labeling l : E(G) −→ A − {0} such that the induced vertex set labeling l : V (G) −→ A defined by l(v) = ∑ { l(uv) | uv ∈ E(G) } is a constant map. In this paper we will consider the Klein-four group V4 = ZZ 2 ⊕ ZZ 2 and investigate graphs that are V4-magic.

متن کامل

INTEGER-MAGIC SPECTRA OF CYCLE RELATED GRAPHS

For any h in N , a graph G = (V, E) is said to be h-magic if there exists a labeling l: E(G) to Z_{h}-{0} such that the induced vertex set labeling l^{+: V(G) to Z_{h}} defined by l^{+}(v)= Summation of l(uv)such that e=uvin in E(G) is a constant map. For a given graph G, the set of all for which G is h-magic is called the integer-magic spectrum of G and is denoted by IM(G). In this paper, the ...

متن کامل

Totally magic cordial labeling of some graphs

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...

متن کامل

On super edge-magic graphs which are weak magic

A (p,q) graph G is total edge-magic if there exits a bijection f: Vu E ~ {1.2,. .. ,p+q} such that for each e=(u,v) in E, we have feu) + fee) + f(v) as a constant. For a graph G, denote M(G) the set of all total edge-magic labelings. The magic strength of G is the minimum of all constants among all labelings in M(G), and denoted by emt(G). The maximum of all constants among M(G) is called the m...

متن کامل

On vertex-magic and edge-magic total injections of graphs

The study of graph labellings has focused on finding classes of graphs which admit a particular type of labelling. Here we consider variations of the well-known edge-magic and vertex-magic total labellings for which all graphs admit such a labelling. In particular, we consider two types of injections of the vertices and edges of a graph with positive integers: (1) for every edge the sum of its ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره None

صفحات  121- 129

تاریخ انتشار 2015-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023