On Baer type criterion for $C$-dense, $C$-closed and quasi injectivity
نویسندگان
چکیده مقاله:
For the subclasses $mathcal{M}_1$ and $mathcal{M}_2$ of monomorphisms in a concrete category $mathcal{C}$, if $mathcal{M}_2subseteq mathcal{M}_1$, then $mathcal{M}_1$-injectivity implies $mathcal{M}_2$-injectivity. The Baer type criterion is about the converse of this fact. In this paper, we apply injectivity to the classes of $C$-dense, $C$-closed monomorphisms. The concept of quasi injectivity is also introduced here to investigte the Baer type criterion for these notions.
Download for Free

Sign up for free to access the full text
Sign up - It's Free!اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودمنابع مشابه
on baer type criterion for $c$-dense, $c$-closed and quasi injectivity
for the subclasses ${mathcal m}_1$ and ${mathcal m}_2$ ofmonomorphisms in a concrete category $mathcal c$, if ${mathcalm}_2subseteq {mathcal m}_1$, then ${mathcal m}_1$-injectivityimplies ${mathcal m}_2$-injectivity. the baer type criterion is about the converse of this fact. in this paper, we apply injectivity to the classes of {it $c$-dense, $c$-closed} monomorphisms. ...
متن کاملOn quasi-baer modules
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
متن کاملOn p-injectivity, YJ-injectivity and quasi-Frobeniusean rings
A new characteristic property of von Neumann regular rings is proposed in terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose simple left (or right) modules are either injective or projective. Artinian rings are characterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided ideals are generated by central idempotents are characte...
متن کاملK1-injectivity for Properly Infinite C ∗-algebras
One of the main tools to classify C∗-algebras is the study of its projections and its unitaries. It was proved by Cuntz in [Cun81] that if A is a purely infinite simple C∗-algebra, then the kernel of the natural map for the unitary group U(A) to the Ktheory groupK1(A) is reduced to the connected component U(A), i.e. A isK1-injective (see §3). We study in this note a finitely generated C∗-algebr...
متن کاملBAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS
A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 05 شماره 02
صفحات 105- 109
تاریخ انتشار 2016-09-14
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023