On Analytical Study of Self-Affine Maps

نویسندگان

  • Ghassemian, H.
  • Saadatmand-Tarzjan, M.
چکیده مقاله:

Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image processing methods, developed by using self-affine maps, take advantage of either the attracting or repelling behaviors which have been, only, experimentally investigated. In this paper, we analytically study the properties of self-affine maps and prove their attracting and repelling behaviors. Furthermore, the new corner/edge pointing behavior is also proposed for contractive self-affine maps. We show that the conventional cost function of self-affine maps may cause critical uncertainty due to providing multiple equivalent optimal translation vectors. Thus, a new cost function is suggested to effectively tackle this problem. For evaluation, it is used with the self-affine snake (SAS) for contour extraction. Experimental results demonstrated that the enhanced SAS provides better performance compared to a number of different active contour methods in terms of both solution quality and CPU time.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on analytical study of self-affine maps

self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. they belong to the general category of patch-based methods. particularly, each self-affine map is defined by one pair of patches in the image domain. by minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. almost all image process...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

On the Characterization of Expansion Maps for Self-Affine Tilings

We consider self-affine tilings in R with expansion matrix φ and address the question which matrices φ can arise this way. In one dimension, λ is an expansion factor of a self-affine tiling if and only if |λ| is a Perron number, by a result of Lind. In two dimensions, when φ is a similarity, we can speak of a complex expansion factor, and there is an analogous necessary condition, due to Thurst...

متن کامل

Non - singular affine surfaces with self - maps

We classify surjective self-maps (of degree at least two) of affine surfaces according to the log Kodaira dimension. In this paper we are interested in the following question. Question. Classify all smooth affine surfaces X/C which admit a proper morphism f : X → X with degree f > 1. In [5] and [18], a classification of smooth projective surfaces with a self-map of degree > 1 has been given. Th...

متن کامل

On Analytical Study of the Self-Affine Mapping System in the Image Processing Domain

All image processing applications of the self-affine mapping system (SAMS) were developed based on the attraction and repellence behaviours. In this paper, we provide some analytical justifications for these properties. Besides, it is shown that the cost function of SAMS sometimes have multiple equivalent solutions which may produce ambiguity. We improve the cost function of self-affine snake a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره 3

صفحات  77- 92

تاریخ انتشار 2016-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023