Numerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets

نویسنده

چکیده مقاله:

In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra  integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two benchmark problems originated from heat transfer. The behavior of the initial and free boundary heat functions along the position axis during the time have been shown through some three dimensional plots. The convergence of the method is pointed in the end of section 2. The numerical examples show the accuracy and applicability of the method from application and programming points of views.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of optimal control problems by using a new second kind Chebyshev wavelet

The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...

متن کامل

Numerical Solution of Fractional Telegraph Equation Using the Second Kind Chebyshev Wavelets Method

In this paper, the two-dimensional second kind Chebyshev wavelets are applied for numerical solution of the time-fractional telegraph equation with Dirichlet boundary conditions. In this way, a new operational matrix of fractional derivative for the second wavelets is derived and then this operational matrix has been employed to obtain the numerical solution of the above mentioned problem. The ...

متن کامل

NUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS

In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...

متن کامل

numerical solution of optimal control problems by using a new second kind chebyshev wavelet

the main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. in this case, state variables will be approximated by a new hybrid technique based on new second kind ch...

متن کامل

Numerical Solution of the Nonlinear Fredholm Integral Equation and the Fredholm Integro-differential Equation of Second Kind using Chebyshev Wavelets

Abstract: In this paper, a numerical method to solve nonlinear Fredholm integral equations of second kind is proposed and some numerical notes about this method are addressed. The method utilizes Chebyshev wavelets constructed on the unit interval as a basis in the Galerkin method. This approach reduces this type of integral equation to solve a nonlinear system of algebraic equation. The method...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 30  شماره 4

صفحات  355- 362

تاریخ انتشار 2019-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023