NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
نویسندگان
چکیده مقاله:
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was not possible, first their Laplacian matrices are transformed into single block diagonal forms and then using the concept of determinant, the calculations are performed.
منابع مشابه
Number of Spanning Trees for Different Product Graphs
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملcounting the number of spanning trees of graphs
a spanning tree of graph g is a spanning subgraph of g that is a tree. in this paper, we focusour attention on (n,m) graphs, where m = n, n + 1, n + 2 and n + 3. we also determine somecoefficients of the laplacian characteristic polynomial of fullerene graphs.
متن کاملAsteroidal number for some product graphs
The notion of Asteroidal triples was introduced by Lekkerkerker and Boland [6]. D.G.Corneil and others [2], Ekkehard Kohler [3] further investigated asteroidal triples. Walter generalized the concept of asteroidal triples to asteroidal sets [8]. Further study was carried out by Haiko Muller [4]. In this paper we find asteroidal numbers for Direct product of cycles, Direct product of path and cy...
متن کاملSharp uppper and lower bounds on the number of spanning trees in Cartesian product graphs
Let G1 and G2 be simple graphs and let n1 = |V (G1)|, m1 = |E(G1)|, n2 = |V (G2)| and m2 = |E(G2)|. In this paper we derive sharp upper and lower bounds for the number of spanning trees τ in the Cartesian product G1 G2 of G1 and G2. We show that: τ(G1 G2) ≥ 2(n1−1)(n2−1) n1n2 (τ(G1)n1) n2+1 2 (τ(G2)n2) n1+1 2 and τ(G1 G2) ≤ τ(G1)τ(G2) [ 2m1 n1 − 1 + 2m2 n2 − 1 ](n1−1)(n2−1) . We also characteri...
متن کاملOptimal Independent Spanning Trees on Cartesian Product of Hybrid Graphs
A set of k spanning trees rooted at the same vertex r in a graph G are called independent spanning trees (ISTs) if for any vertex x 6= r, the k paths from v to r, one path in each tree, are internally disjoint. The design of ISTs on graphs has applications to fault-tolerant broadcasting and secure message distribution in networks. It was conjectured that for any k-connected graph there exist k ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 1
صفحات 121- 135
تاریخ انتشار 2014-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023