New Integral Transform for Solving Nonlinear Partial Dierential Equations of fractional order

نویسندگان

  • A. Neamaty Department of Mathematics, University of Mazandaran, Babolsar, Iran
  • B. Agheli Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
  • R. Darzi Department of Mathematics, Neka Branch, Islamic Azad University, Neka, Iran
چکیده مقاله:

In this work, we have applied Elzaki transform and He's homotopy perturbation method to solvepartial dierential equation (PDEs) with time-fractional derivative. With help He's homotopy per-turbation, we can handle the nonlinear terms. Further, we have applied this suggested He's homotopyperturbation method in order to reformulate initial value problem. Some illustrative examples aregiven in order to show the ability and simplicity of the approach. All numerical calculations in thismanuscript were performed on a PC applying some programs written in Maple.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

new integral transform for solving nonlinear partial di erential equations of fractional order

in this work, we have applied elzaki transform and he's homotopy perturbation method to solvepartial di erential equation (pdes) with time-fractional derivative. with help he's homotopy per-turbation, we can handle the nonlinear terms. further, we have applied this suggested he's homotopyperturbation method in order to reformulate initial value problem. some illustrative examples...

متن کامل

SOLVING FRACTIONAL NONLINEAR SCHR"{O}DINGER EQUATIONS BY FRACTIONAL COMPLEX TRANSFORM METHOD

In this paper, we apply fractional complex transform to convert the fractional nonlinear Schr"{o}dinger equations to the nonlinear Schr"{o}dinger equations.  

متن کامل

Homotopy Perturbation Method and Aboodh Transform for Solving Nonlinear Partial Differential Equations

Here, a new method called Aboodh transform homotopy perturbation method(ATHPM) is used to solve nonlinear partial dierential equations, we presenta reliable combination of homotopy perturbation method and Aboodh transformto investigate some nonlinear partial dierential equations. The nonlinearterms can be handled by the use of homotopy perturbation method. The resultsshow the eciency of this me...

متن کامل

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

Global Attractivity of Solutions for Nonlinear Fractional Order Riemann-Liouville Volterra-Stieltjes Partial Integral Equations

Integral equations are one of the most useful mathematical tools in both pure and applied analysis. This is particularly true of problems in mechanical vibrations and the related fields of engineering and mathematical physics. We can find numerous applications of differential and integral equations of fractional order in viscoelasticity, electrochemistry, control, porous media, electromagnetism...

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 1

صفحات  69- 86

تاریخ انتشار 2013-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023