Multiple solutions of the nonlinear reaction-diusion model with fractional reaction
نویسندگان
چکیده مقاله:
The purpose of this letter is to revisit the nonlinear reaction-diusion modelin porous catalysts when reaction term is fractional function of the concen-tration distribution of the reactant. This model, which originates also in uidand solute transport in soft tissues and microvessels, has been recently givenanalytical solution in terms of Taylors series for dierent family of reactionterms. We apply the method so-called predictor homotopy analysis method(PHAM) which has been recently proposed to predict multiplicity of solutionsof nonlinear BVPs. Consequently, it is indicated that the problem for somevalues of the parameter admits multiple solutions. Also, error analysis of thesesolutions are given graphically.
منابع مشابه
multiple solutions of the nonlinear reaction-diusion model with fractional reaction
the purpose of this letter is to revisit the nonlinear reaction-diusion modelin porous catalysts when reaction term is fractional function of the concen-tration distribution of the reactant. this model, which originates also in uidand solute transport in soft tissues and microvessels, has been recently givenanalytical solution in terms of taylors series for dierent family of reactionterms. we...
متن کاملNumerical solutions for fractional reaction-diffusion equations
Fractional diffusion equations are useful for applications where a cloud of particles spreads faster than the classical equation predicts. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative of order less than two. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fr...
متن کاملOn the generalized mass transfer with a chemical reaction: Fractional derivative model
In this article using the inverse Laplace transform, we show analytical solutions for the generalized mass transfers with (and without) a chemical reaction. These transfers have been expressed as the Couette flow with the fractional derivative of the Caputo sense. Also, using the Hankel contour for the Bromwich's integral, the solutions are given in terms of the generalized Airy functions.
متن کاملNon-normality Eeects in a Discretised Nonlinear Reaction-convection-diusion Equation
What is the long-time eeect of adding convection to a discretised reaction-diiusion equation? For linear problems, it is well known that convection may denormalise the process, and, in particular, eigenvalue-based stability predictions may be over-optimistic. This work deals with a related issue| with a nonlinear reaction term, the non-normality can greatly innuence the long-time dynamics. For ...
متن کاملNumerical analysis of singularly perturbed nonlinear reaction-diffusion problems with multiple solutions
A nonlinear reaction-diffusion two-point boundary value problem with multiple solutions is considered. Its second-order derivative is multiplied by a small positive parameter ε, which induces boundary layers. Using dynamical systems techniques, asymptotic properties of its discrete suband super-solutions are derived. These properties are used to investigate the accuracy of solutions of a standa...
متن کاملExact and Approximate Solutions of Fractional Diffusion Equations with Fractional Reaction Terms
In this paper, we consider fractional reaction-diffusion equations with linear and nonlinear fractional reaction terms in a semi-infinite domain. Using q-Homotopy Analysis Method, solutions to these equations are obtained in the form of general recurrence relations. Closed form solutions in the form of the Mittag-Leffler function are perfectly obtained in the case with linear fractional reactio...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 2
صفحات 159- 170
تاریخ انتشار 2013-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023