Multi-frame Super Resolution for Improving Vehicle Licence Plate Recognition

نویسندگان

چکیده مقاله:

License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license plate cannot be readable; hence, the recognition algorithm could not work well. There are many reasons resulting in the degradation of captured license plate images, such as downsampling, blurring, warping, noising, and distance of car from camera. Many researchers try to enhance the quality of input images by image restoration algorithms to improve the LPR final accuracy. Recently, super-resolution (SR) techniques are widely used to construct a high-resolution (HR) image from several observed low-resolution (LR) images, thereby removing the degradations caused by the imaging of a low resolution camera. As mentioned, in real ITS, the resolution of input image is not high, but there are successive frames from a target, therefore multi-frame SR methods can be used to overcome the ITS resolution challenges. In this paper, an SR technique based on POCS (Projection onto Convex Sets) is used to reconstruct an HR license plate image from a set of registered LR images. The normalized convolution (NC) framework is used in POCS, in which the local signal is approximated through a projection onto a subspace. However, the window function of adaptive NC is adapted to local linear structures. This results in more samples of the same modality being fused for the reconstruction, which in turn reduces diffusion across discontinuities, that is very important factor in improving LPR accuracy. The first step in multi-frame SR is image registration which is necessary to improve quality of the reconstructed HR image, especially in LPR when the quality of the reconstructed edges of characters is very important. For simplicity, it is often supposed simple motions (usually translation) between successive frames in multi-frame SR, but changes in scale, rotation and translation in license plate successive images may happened. It means that the registration is one of the main challenges in SR used for LPR. This paper proposes use of a two-step image matching algorithm to improve the quality of registration stage. In the first step, Fourier-Mellin image matching is used for registration which overcomes the scale and rotation challenge, but the accuracy of registration is not suitable. After matching of the successive input images by Fourier-Mellin algorithm, the Keren or Vandewalle image matching is used to improve the quality of final registration. For real LR images, Fourier-Mellin plus Keren shows higher performance while for simulated LR images, Fourier-Mellin plus Vandewalle shows higher performance. In order to compare the results of two proposed SR algorithms for LPR application with the other methods, we prepare three real datasets of successive frames for Persian LPR, the first and the second one are captured HR and LR successive frames, respectively, while the third one is a downsampled LR version of HR frames. The output HR image of all compared methods is feed to a demo version of a Persian LPR software (www.farsiocr.ir), and the accuracy of each character and the accuracy each license are reported. Five SR methods are compared including: cubic interpolation, ASDS-AR (Adaptive Sparse Domain Selection and Adaptive Regularization), standard POCS, our first and second proposed SR method which both of them firstly use Fourier-Mellin registration, while the first one uses Keren, and the second one uses Vandewalle image matching for a fine registration. Moreover, to present the effectiveness of using SR methods before LPR, the LR images are also directly feed to LPR software. The results represent when the length of license is less than 50 pixels, using SR methods before LPR improves the recognition accuracy. Moreover, when the license plate length is less 35 pixels, SR methods could not improve the performances. Our investigations show that for LR downsampled images from HR ones, our proposed SR method with Fourier-Mellin plus Keren registration reaches to the highest performance, while for real LR images, which are captured by a low resolution camera, our proposed SR method with Fourier-Mellin plus Vandewalle registration reaches to the highest performance. On the other hand, since some Persian numerical characters, like 2 (2) and 3 (3) are very similar to each other, all of the compared methods may confuse between them in LPR step, therefore, the accuracy per license of all compared methods are not high. Among all previous compared methods, for LR images with length between 35 to 50 pixels, the standard PCOS shows the best results, while our proposed SR methods improve the accuracy per character around 25%, with respect to PCOS method.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

Vehicle Licence Plate Recognition by Fuzzy Artmap Neural Network

Vehicle license plate recognition is one of the techniques that can be used for the identification of vehicles. It is useful to be applied to many applications such as entrance admission, security, parking control, airport or harbour cargo control, road traffic control, speed control and so on. In this paper, we present an approach of recognising vehicle license plate using the Fuzzy ARTMAP neu...

متن کامل

pseudo zernike moment-based multi-frame super resolution

the goal of multi-frame super resolution (sr) is to fuse multiple low resolution (lr) images to produce one high resolution (hr) image. the major challenge of classic sr approaches is accurate motion estimation between the frames. to handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

A multi-frame image super-resolution method

Multi-frame image super-resolution (SR) aims to utilize information from a set of lowresolution (LR) images to compose a high-resolution (HR) one. As it is desirable or essential in many real applications, recent years have witnessed the growing interest in the problem of multi-frame SR reconstruction. This set of algorithms commonly utilizes a linear observation model to construct the relation...

متن کامل

Deep multi-frame face super-resolution

Face verification and recognition problems have seen rapid progress in recent years, however recognition from small size images remains a challenging task that is inherently intertwined with the task of face super-resolution. Tackling this problem using multiple frames is an attractive idea, yet requires solving the alignment problem that is also challenging for low-resolution faces. Here we pr...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 16  شماره 2

صفحات  61- 76

تاریخ انتشار 2019-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023