Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

نویسندگان

  • Mehmet Acikgoz Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, Gaziantep, 27310, Turkey
  • Ugur Duran Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, Gaziantep, 27310, Turkey
چکیده مقاله:

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities. Moreover, we derive some correlations with the modified Carlitz's $q$-Bernoulli polynomials with weight ($alpha ,beta $), the modified degenerate Carlitz's $q$-Bernoulli polynomials with weight ($alpha ,beta $), the Stirling numbers of the first kind and second kind.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the weighted degenerate Carlitz q-Bernoulli polynomials and numbers

In this paper, by using the p-adic q-integral on Zp which was defined by Kim, we define the weighted Carlitz q-Bernoulli polynomials and investigate some identities of these polynomials. In particular, we define the weighted degenerate Carlitz’s q-Bernoulli polynomials and numbers and give some interesting properties that are associated with these numbers and polynomials. AMS subject classifica...

متن کامل

On the q - Bernoulli Numbers and Polynomials with Weight α

and Applied Analysis 3 The purpose of this paper is to derive a new concept of higher-order q-Bernoulli numbers and polynomials with weight α from the fermionic p-adic q-integral on Zp. Finally, we present a systemic study of some families of higher-order q-Bernoulli numbers and polynomials with weight α. 2. Higher Order q-Bernoulli Numbers with Weight α Let β ∈ Z and α ∈ N in this paper. For k...

متن کامل

A Note on the Modified q - Bernoulli Numbers and Polynomials with Weight α

and Applied Analysis 3 we derive some interesting identities and relations on the modified q-Bernoulli numbers and polynomials. 2. The Modified q-Bernoulli Numbers and Polynomials with Weight α In this section, we assume α ∈ Q. Now, we define the modified q-Bernoulli numbers with weight α B̃ α n,q as follows:

متن کامل

q-BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH GAUSSIAN BINOMIAL COEFFICIENT

Let q be regarded as either a complex number q ∈ C or a p-adic number q ∈ Cp. If q ∈ C, then we always assume |q| < 1. If q ∈ Cp, we normally assume |1− q|p < p − 1 p−1 , which implies that q = exp(x log q) for |x|p ≤ 1. Here, | · |p is the p-adic absolute value in Cp with |p|p = 1 p . The q-basic natural number are defined by [n]q = 1−q 1−q = 1 + q + · · · + q , ( n ∈ N), and q-factorial are a...

متن کامل

A Note on Partially Degenerate Bernoulli Numbers and Polynomials

In this paper, we consider the partially degenerate Bernoulli numbers and polynomials of the first kind and the second kind and investigate some properties of these numbers and polynomials.

متن کامل

A Note on Degenerate Hermite Poly–bernoulli Numbers and Polynomials

In this paper, we introduce a new class of degenerate Hermite poly-Bernoulli polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of d...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 2

صفحات  135- 144

تاریخ انتشار 2017-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023