MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

نویسندگان

  • H. Nezamabadi-pour Intelligent Data Processing Laboratory (IDPL), Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
  • Sh kashef Intelligent Data Processing Laboratory (IDPL), Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
چکیده مقاله:

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific features. Label-specific features means that each class label is supposed to have its own characteristics and is determined by some specific features that are the most discriminative features for that label. LIFT employs clustering methods to discover the properties of data. More precisely, LIFT divides the training instances into positive and negative clusters for each label which respectively consist of the training examples with and without that label. It then selects representative centroids in the positive and negative instances of each label by k-means clustering and replaces the original features of a sample by the distances to these representatives. Constructing new features, the dimensionality of the new space reduces significantly. However, to construct these new features, the original features are needed. Therefore, the complexity of the process of multi-label classification does not diminish, in practice. In this paper, we make a modification on LIFT to reduce the computational burden of the classifier and improve or at least preserve the performance of it, as well. The experimental results show that the proposed algorithm has obtained these goals, simultaneously.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Lysine Ubiquitylation with Ensemble Classifier and Feature Selection

Ubiquitylation is an important process of post-translational modification. Correct identification of protein lysine ubiquitylation sites is of fundamental importance to understand the molecular mechanism of lysine ubiquitylation in biological systems. This paper develops a novel computational method to effectively identify the lysine ubiquitylation sites based on the ensemble approach. In the p...

متن کامل

Multi-Label Informed Feature Selection

Multi-label learning has been extensively studied in the area of bioinformatics, information retrieval, multimedia annotation, etc. In multi-label learning, each instance is associated with multiple interdependent class labels, the label information can be noisy and incomplete. In addition, multi-labeled data often has high-dimensional noisy, irrelevant and redundant features. As an effective d...

متن کامل

Classifier Selection Approaches for Multi-label Problems

While it is known that multiple classifier systems can be effective also in multi-label problems, only the classifier fusion approach has been considered so far. In this paper we focus on the classifier selection approach instead. We propose an implementation of this approach specific to multi-label classifiers, based on selecting the outputs of a possibly different subset of multi-label classi...

متن کامل

Efficient Multi-Label Feature Selection Using Entropy-Based Label Selection

Abstract: Multi-label feature selection is designed to select a subset of features according to their importance to multiple labels. This task can be achieved by ranking the dependencies of features and selecting the features with the highest rankings. In a multi-label feature selection problem, the algorithm may be faced with a dataset containing a large number of labels. Because the computati...

متن کامل

Enhanced Classification Accuracy for Cardiotocogram Data with Ensemble Feature Selection and Classifier Ensemble

In this paper ensemble learning based feature selection and classifier ensemble model is proposed to improve classification accuracy. The hypothesis is that good feature sets contain features that are highly correlated with the class from ensemble feature selection to SVM ensembles which can be achieved on the performance of classification accuracy. The proposed approach consists of two phases:...

متن کامل

Feature selection for multi-label learning

Feature Selection plays an important role in machine learning and data mining, and it is often applied as a data pre-processing step. This task can speed up learning algorithms and sometimes improve their performance. In multi-label learning, label dependence is considered another aspect that can contribute to improve learning performance. A replicable and wide systematic review performed by us...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 3

صفحات  355- 365

تاریخ انتشار 2019-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023