Melanoma detection with a deep learning model

نویسنده

  • Ali Ameri Department of Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
چکیده مقاله:

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic study, the database of HAM10000 (human against machine with 10000 training images) dermoscopy images, 1000 melanocytic nevi and 1000 melanoma images were employed, where in each category 900 images were selected randomly and were designated as the training set. The remaining 100 images in each category were considered as the test set. A deep learning convolutional neural network  (CNN) was deployed with AlexNet (Krizhevsky et al., 2012) as a pretrained model. The network was trained with 1800 dermoscope images and subsequently was validated with 200 test images. The proposed method removes the need for cumbersome tasks of lesion segmentation and feature extraction. Instead, the CNN can automatically learn and extract useful features from the raw images. Therefore, no image preprocessing is required. Study was conducted at Shahid Beheshti University of Medical Sciences, Tehran, Iran from January to February, 2020. Results: The proposed model achieved an area under the receiver operating characteristic (ROC) curve of 0.98. Using a confidence score threshold of 0.5, a classification accuracy of 93%, sensitivity of 94%, and specificity of 92% was attained. The user can adjust the threshold to change the model performance according to preference. For example, if sensitivity is the main concern; i.e. false negative is to be avoided, then the threshold must be reduced to improve sensitivity at the cost of specificity. The ROC curve shows that to achieve sensitivity of 100%, specificity is decreased to 83%. Conclusion: The results show the strength of convolutional neural networks in melanoma detection in dermoscopy images. The proposed method can be deployed to help dermatologists in identifying melanoma. It can also be implemented for self diagnosis of photographs taken from skin lesions. This may facilitate early detection of melanoma, and hence substantially reduce the mortality chance of this dangerous malignancy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network

Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is v...

متن کامل

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

DeepIso: A Deep Learning Model for Peptide Feature Detection

Liquid chromatography with tandem mass spectrometry (LC-MS/MS) based proteomics is a well-established research field with major applications such as identification of disease biomarkers, drug discovery, drug design and development. In proteomics, protein identification and quantification is a fundamental task, which is done by first enzymatically digesting it into peptides, and then analyzing p...

متن کامل

Modularity Based Community Detection with Deep Learning

Identification of module or community structures is important for characterizing and understanding complex systems. While designed with different objectives, i.e., stochastic models for regeneration and modularity maximization models for discrimination, both these two types of model look for low-rank embedding to best represent and reconstruct network topology. However, the mapping through such...

متن کامل

Hierarchical Object Detection with Deep Reinforcement Learning

We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller wi...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 78  شماره 3

صفحات  150- 154

تاریخ انتشار 2020-06

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023