Mechanical Behavior of Hybrid Fiber Reinforced High Strength Concrete with Graded Fibers
نویسندگان
چکیده مقاله:
Brittleness, which was the inherent weakness in High Strength Concrete (HSC), can be avoided by reinforcing the concrete with discontinuous fibers. Reinforcing HSC with more than one fiber is advantageous in an overall improvement of the mechanical performance of the composite. In this experimental study, Hybrid Fiber Reinforced High Strength Concrete (HyFR-HSC) mixes were formed by blending single length glass fiber and single length steel fiber with a total volume fraction of 1.65% into the concrete and Hybrid Graded Fiber Reinforced High Strength Concrete (HyGrFR-HSC) mixes were obtained by mixing different lengths of glass fiber with different length of steel fibers at a total volume fraction of 1.65% into the concrete. A comparative study was made between HyFR-HSC and HyGrFR-HSC specimens to investigate the effect of fiber grading on strength properties and the uniaxial compressive behaviour of HSC with hybrid fibers. In both HyFRC and HyGrFRC mixes, glass fibers improved the pre-peak behaviour, and steel fibers improved the post-peak behaviour of concrete, thereby exhibiting a positive synergy in combining glass and steel fiber into the concrete. Among the two-hybrid FRC’s, HyGrFRC outperformed HyFRC with substantial improvement in both strength and ductility. Among all the HyGrFRC mixes, HyGr9 mix, which contain a higher amount of long-length fibers exhibited better improvement in peak strain, ductility factor, total energy and toughness index. The replacement of single length of fibers with graded length fibers at higher volume fraction in HyFRC is useful in improving workability, thereby providing better fiber dispersion and thus enhances both the pre-peak and post-peak performance of the concrete. From this investigation, it can be inferred that grading of fibers improved the mechanical behaviour of HyFRC by exhibiting positive synergy from both fiber geometry and fiber type.
منابع مشابه
Strength and Toughness of Reinforced Concrete with Coated Steel Fibers
The effect of zinc phosphate (ZP) and zinc calcium phosphate (ZCP) coatings on the reinforcing mechanisms of smooth steel fiber in cementitious matrix have been studied. The results of pull out tests illustrated that by coating smooth steel fiber the pull-out load may be increased up to 100%. The effect of zinc phosphate coating on interface bonding was more than zinc-calcium phosphate coating....
متن کاملFracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete
In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this...
متن کاملExperimental investigation of the strength of glass fiber-reinforced concrete exposed to high temperature
This study investigated the effects of high temperature exposure on the compressive, tensile, and flexural strengths of concrete containing glass fiber. A total of 108 cubic specimens (150 mm × 150 mm × 150 mm), cylindrical specimens (300 mm × 150 mm), and prismatic specimens (500 mm × 150 mm × 150 mm) were prepared for compressive, tensile, and flexural strength testing, respectively. The spec...
متن کاملMechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets
This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip...
متن کاملMechanical Behavior of Self-Compacting Reinforced Concrete Including Synthetics and Steel Fibers
This paper investigated the effects of combining fibers with self-consolidating concrete (SCC). 12 series of test specimens were prepared using three kinds of fibers including steel, polyphenylene sulfide (PPS) and glass fibers with four different volumes fractions and one specimen without fibers as a reference sample. All plans were subjected to fresh concrete tests. For mechanical behavior of...
متن کاملAxial Compressive Strength of Reinforced Concrete Columns Wrapped with Fiber Reinforced Polymers (FRP)
This paper presents the results of a study on the axial compressive strength of columnsstrengthened with FRP wrap. The experimental part of the study included testing 6 reinforcedconcrete columns in two series. The first series comprised three similar circular reinforced concretecolumns strengthened with FRP wrap. The second series consisted of three similar square columns,two with sharp corner...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 33 شماره 8
صفحات 1465- 1471
تاریخ انتشار 2020-08-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023