Manufacturing a Biomimetic Biorecator in Cardiac Tissue Engineering
نویسندگان
چکیده مقاله:
Introduction: The direct approach of cardiac tissue engineering is to mimic the natural tissue of heart, considering the significant role of scaffolding and mechanical simulation. Methods: To achieve this purpose, a composite Polycaprolactone (PCL)/Gelatin electrospun scaffold with a ratio of 70:30 and with the most similarities to the cardiac extracellular matrix was fabricated with aligned nanofibers. The scaffold was evaluated using scanning electron microscopy (SEM), mechanical strength analysis, and contact angle test. To simulate the cardiac contraction, a developed Mechanical Loading Device (Bioreactor) was designed to apply a mechanical load with a specific frequency and tensile rate values in the direction of aligned nanofibers due to simulating natural cardiac tissue. Results: Based on our results from the contact angle and mechanical strength tests, we concluded that our designed scaffold has appropriate adhesion and strength to use as cardiac scaffold and is suitable for imposing the frequency of 1Hz and 10% strain. The Bioreactor also worked properly in producing the required frequency, tensile rate and temperature. Conclusion: Since an essential difference between cardiomyocytes and other cells is their contraction, manufacturing a biomimetic bioreactor to simulate the normal cardiac contraction of cardiomyocytes and their required temperature to be survived in-vitro could be a promising approach in cardiac tissue engineering.
منابع مشابه
Biomimetic approach to cardiac tissue engineering.
Here, we review an approach to tissue engineering of functional myocardium that is biomimetic in nature, as it involves the use of culture systems designed to recapitulate some aspects of the actual in vivo environment. To mimic the capillary network, subpopulations of neonatal rat heart cells were cultured on a highly porous elastomer scaffold with a parallel array of channels perfused with cu...
متن کاملBiomimetic Electrical Stimulation for Cardiac Tissue Engineering
A major challenge of tissue engineering is directing cells to establish the physiological structure and function of the tissue being replaced. Electrical stimulation has been used to induce synchronous contractions of cultured cardiac constructs. The hypothesis adopted for this study is that functional cardiac constructs can be engineered by "mimicking" the conditions present during cardiac dev...
متن کاملTissue engineering and developmental biology: going biomimetic.
This article contains the collective views expressed at the first session of the workshop "Tissue Engineering--The Next Generation," which was devoted to the interactions between developmental biology and tissue engineering. Donald Ingber discussed the chasms between developmental biology and tissue engineering from the perspective of a cell biologist who has had interest in tissue engineering ...
متن کاملBiomimetic electrospun nanofibrous structures for tissue engineering.
Biomimetic nanofibrous scaffolds mimicking important features of the native extracellular matrix provide a promising strategy to restore functions or achieve favorable responses for tissue regeneration. This review provides a brief overview of current state-of-the-art research designing and using biomimetic electrospun nanofibers as scaffolds for tissue engineering. It begins with a brief intro...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 29 شماره 2
صفحات 3500- 3513
تاریخ انتشار 2021-04
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023