Magnetic nanoparticles: a promising component in RNA extraction process

نویسندگان

  • Faezeh Khatami Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Postal Code: 1571914911, Tehran, Iran.
  • farzaneh najafi Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Postal Code: 1571914911, Tehran, Iran.
  • Fataneh Yari Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Postal Code: 33535111, Tehran, Iran.
  • Ramazan Ali Khavari-Nejad Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Postal Code: 1571914911, Tehran, Iran; and Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده مقاله:

Magnetic nanoparticles separation technology is a method for quick and easy extraction biomolecules such as proteins, DNA and RNA. The present work describes total RNA isolation procedure from transformed rose petals in our laboratory using magnetic nanoparticles as a solid phase absorbant. Petals are the main sources of secondary metabolites, i.e. carotenoids, anthocyanins, flavonoids and phenolic compounds, which interfere with nucleic acids isolation. The physical basis of this technique relies on the interaction with external magnetic fields, and therefore the magnetic moment of the particles and nucleic acid plays the main role. The present work showed that, quantity and quality of extracted RNA by magnetic procedure were higher than that of the conventional method in all tested samples. Additionally, preparing RNA samples, take less than 50 minutes as against several hours taken by common protocols. Furthermore, successful RNA isolation was found to follow-up reactions such as PCR amplification and restriction endonuclease digestion especially in colorful petals. The solid-phase extraction method for the isolation of RNA in this research offers several advantages over the conventional methods using phenol-chloroform extraction: it is convenient to use, rapid, time-saving and reducing the consumption of toxic organic solvents; therefore, making it more amenable to automation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifunctional Magnetic Nanoparticles-A Promising Approach for Cancer Treatment

Cancer is one of the leading causes of death in the world [1]. Despite significant advances in the treatment of cancer in recent decades, it is still difficult to eradicate. Many factors contribute to its resiliency such as Multi Drug Resistance (MDR), poor selectivity for cytotoxic drugs, nonspecific bio-distribution and risk of damaging healthy cell [2,3]. The pathogenesis of cancer involves ...

متن کامل

Extraction of Sulfathiazole from Urine Using Biosynthesized Magnetic Nanoparticles

The application of Pd/Fe3O4 nanoparticles (NPs) for the adsorption of sulfathiazole from urine samples prior to high performance liquid chromatography-ultraviolet detection was studied. Pd/Fe3O4 NPs were synthesized using plant extract. Possible impact parameters in the extraction process such as the magnetic adsorbents amount, extraction time, sample pH and desorption conditions were investiga...

متن کامل

Extraction of Sulfathiazole from Urine Using Biosynthesized Magnetic Nanoparticles

The application of Pd/Fe3O4 nanoparticles (NPs) for the adsorption of sulfathiazole from urine samples prior to high performance liquid chromatography-ultraviolet detection was studied. Pd/Fe3O4 NPs were synthesized using plant extract. Possible impact parameters in the extraction process such as the magnetic adsorbents amount, extraction time, sample pH and desorption conditions were investiga...

متن کامل

Solid Phase Extraction Using Modified Magnetic Iron Oxide Nanoparticles for Extraction and Spectrofluorimetric Determination of Carvedilol in Human Plasma Samples

A new analytical approach was developed involving magnetic solid–phase extraction and spectrofluorimetric determination of carvedilol in human plasma samples. A plasma sample was prepared and adjusted to pH 8.2–10, then carvedilol was quickly extracted using iron oxide magnetic nanoparticles modified by the surfactant cetyltrimethylammonium bromide and determined to apply spectrofluorimetry...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 1

صفحات  47- 52

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023