$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles
نویسنده
چکیده مقاله:
In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle. We prove optimal estimates for the mapping properties of the Bergman projection on these domains.
منابع مشابه
A study of the Bergman projection in certain Hartogs domains
We show that the Bergman projection does not preserve smoothness of functions in some pseudoconvex domains in the space of two complex variables.
متن کاملBOUNDEDNESS OF THE BERGMAN PROJECTIONS ON Lp SPACES WITH RADIAL WEIGHTS
D |f(z)|dμ(z) )︀1/p < ∞ and by La(D, dμ) (or La(D) for short) the subspace of the space L(D) comprising the functions that are analytic on D. If p = 2, La(D) is a Hilbert subspace of L2(D) and it is called Bergman space. Let P denote the orthogonal projector of L2(D) on La(D) (Bergman projection). Let {δn}n=0 be defined by δn = (︀ 2π ∫︀ 1 0 r 2n+1w(r) dr )︀1/2 . Then, the sequence of functions ...
متن کاملWeighted Bergman projections on the Hartogs triangle: exponential decay
We study weighted Bergman projections on the Hartogs triangle in C. We show that projections corresponding to exponentially vanishing weights have degenerate L mapping properties.
متن کاملZeroes of the Bergman kernel of Hartogs domains
We exhibit a class of bounded, strongly convex Hartogs domains with realanalytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.
متن کاملBoundedness of the Bergman Type Operators on Mixed Norm Spaces
Conditions sufficient for boundedness of the Bergman type operators on certain mixed norm spaces Lp,q(φ) (0 < p < 1, 1 < q <∞) of functions on the unit ball of Cn are given, and this is used to solve Gleason’s problem for the mixed norm spaces Hp,q(φ) (0 < p < 1, 1 < q <∞).
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 43 شماره 7
صفحات 2275- 2280
تاریخ انتشار 2017-12-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023