Linear codes with complementary duals related to the complement of the Higman-Sims graph

نویسنده

  • B.G. Rodrigues School of Mathematics‎, ‎Statistics and Computer Science‎, ‎University of KwaZulu-Natal‎, ‎Durban 4000‎, ‎South Africa.
چکیده مقاله:

‎In this paper we study codes $C_p(overline{{rm HiS}})$ where $p =3,7‎, ‎11$ defined by the 3‎- ‎7‎- ‎and 11-modular representations of the simple sporadic group ${rm HS}$ of Higman and Sims of degree 100‎. ‎With exception of $p=11$ the codes are those defined by the row span of the adjacency matrix of the complement of the Higman-Sims graph over $GF(3)$ and $GF(7).$ We show that these codes have a similar decoding performance to that of their binary counterparts obtained from the Higman-Sims graph‎. ‎In particular‎, ‎we show that these are linear codes with complementary duals‎, ‎and thus meet the asymptotic Gilbert-Varshamov bound‎. ‎Furthermore‎, ‎using the codewords of weight 30 in $C_p(overline{{rm HiS}})$ we determine a subcode of codimension 1‎, ‎and thus show that the permutation module of dimension 100 over the fields of 3‎, ‎7 and 11-elements‎, ‎respectively is the direct sum of three absolutely irreducible modules of dimensions 1‎, ‎22 and 77‎. ‎The latter being also the subdegrees of the orbit decomposition of the rank-3 representation‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Codes Related to the Higman-Sims Graph

All linear codes of length 100 over a field F which admit the Higman-Sims simple group HS in its rank 3 representation are determined. By group representation theory it is proved that they can all be understood as submodules of the permutation module FΩ where Ω denotes the vertex set of the Higman-Sims graph. This module is semisimple if charF 6= 2, 5 and absolutely indecomposable otherwise. Al...

متن کامل

Linear codes with complementary duals

A linear code with a complementary dual (or an LCD code) is defined to be a linear code C whose dual code C⊥ satisfies C ∩ C⊥ = {0}. The algebraic characterization of LCD codes is given, and it is shown that asymptotically good LCD codes exist. LCD codes are shown to provide an optimum linear coding solution for the two-user binary adder channel. The nearest-neighbor (or maximum-likelihood) dec...

متن کامل

the evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology

abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...

15 صفحه اول

Decomposing the Higman-Sims graph into double Petersen graphs

It has been known for some time that the Higman-Sims graph can be decomposed into the disjoint union of two Hoffman-Singleton graphs. In this paper we establish that the Higman-Sims graph can be edge decomposed into the disjoint union of 5 double-Petersen graphs, each on 20 vertices. It is shown that in fact this can be achieved in 36960 distinct ways. It is also shown that these different ways...

متن کامل

Explicit MDS Codes with Complementary Duals

In 1964, Massey introduced a class of codes with complementary duals which are called Linear Complimentary Dual (LCD for short) codes. He showed that LCD codes have applications in communication system, side-channel attack (SCA) and so on. LCD codes have been extensively studied in literature. On the other hand, MDS codes form an optimal family of classical codes which have wide applications in...

متن کامل

Tight Subdesigns of the Higman-sims Design

The Higman-Sims design is an incidence structure of 176 points and 176 blocks of cardinality 50 with every two blocks meeting in 14 points. The automorphism group of this design is the Higman-Sims simple group. We demonstrate that the point set and the block set of the Higman-Sims design can be partitioned into subsets X1, X2, . . . , X11 and B1, B2, . . . , B11, respectively, so that the subst...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 7

صفحات  2183- 2204

تاریخ انتشار 2017-12-30

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023