Lie Ideals and Generalized Derivations in Semiprime Rings

نویسندگان

چکیده مقاله:

Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on Generalized Derivations on Lie Ideals in Prime Rings

Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that usH(u)ut = 0 for all u ∈ L, where s ≥ 0, t ≥ 0 are fixed integers. Then H(x) = 0 for all x ∈ R unless char R = 2 and R satisfies S4, the standard identity in four variables. Let R be an associative ring with center Z(R). For x, y ∈ R, the commutator xy− yx will be denoted by [x, y]. An add...

متن کامل

On Generalized Derivations of Semiprime Rings

Let F be a commuting generalized derivation, with associated derivation d, on a semiprime ring R. We show that d(x)[y, z] = 0 for all x, y, z ∈ R and d is central. We define and characterize dependent elements of F and investigate a decomposition of R relative to F . Mathematics Subject Classification: 16N60, 16W25

متن کامل

Remarks on Generalized Derivations in Prime and Semiprime Rings

Let R be a ring with center Z and I a nonzero ideal of R. An additive mapping F : R → R is called a generalized derivation of R if there exists a derivation d : R → R such that F xy F x y xd y for all x, y ∈ R. In the present paper, we prove that if F x, y ± x, y for all x, y ∈ I or F x ◦ y ± x ◦ y for all x, y ∈ I, then the semiprime ring R must contains a nonzero central ideal, provided d I /...

متن کامل

Derivations in semiprime rings and Banach algebras

Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره None

صفحات  45- 54

تاریخ انتشار 2015-10

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023