Lexicographical ordering by spectral moments of trees with a given bipartition

نویسندگان

  • J. Zhang Faculty of Mathematics and Statistics, Central China Normal University
  • S. L i Faculty of Mathematics and Statistics, Central China Normal University
چکیده مقاله:

 Lexicographic ordering by spectral moments ($S$-order) among all trees is discussed in this‎ ‎paper‎. ‎For two given positive integers $p$ and $q$ with $pleqslant q$‎, ‎we denote $mathscr{T}_n^{p‎, ‎q}={T‎: ‎T$ is a tree of order $n$ with a $(p‎, ‎q)$-bipartition}‎. Furthermore, ‎the last four trees‎, ‎in the $S$-order‎, ‎among $mathscr{T}_n^{p‎, ‎q},(4leqslant pleqslant q)$ are characterized‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

lexicographical ordering by spectral moments of trees with a given bipartition

lexicographic ordering by spectral moments ($s$-order) among all trees is discussed in this‎ ‎paper‎. ‎for two given positive integers $p$ and $q$ with $pleqslant q$‎, ‎we denote $mathscr{t}_n^{p‎, ‎q}={t‎: ‎t$ is a tree of order $n$ with a $(p‎, ‎q)$-bipartition}‎. furthermore, ‎the last four trees‎, ‎in the $s$-order‎, ‎among $mathscr{t}_n^{p‎, ‎q},(4leqslant pleqslant q)$ are characterized‎.

متن کامل

Spectral moments of trees with given degree sequence

Article history: Received 16 April 2013 Accepted 11 October 2013 Available online 30 October 2013 Submitted by R. Brualdi MSC: 05C05 05C50 05C35

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Ordering trees by their Laplacian spectral radii

Denote by Tn the set of trees on n vertices. Zhang and Li [X.D. Zang, J.S. Li, The two largest eigenvalues of Laplacian matrices of trees (in Chinese), J. China Univ. Sci. Technol. 28 (1998) 513–518] and Guo [J.M. Guo, On the Laplacian spectral radius of a tree, Linear Algebra Appl. 368 (2003) 379–385] give the first four trees in Tn, ordered according to their Laplacian spectral radii. In this...

متن کامل

signless laplacian spectral moments of graphs and ordering some graphs with respect to them

let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $a(g)$ the adjacency matrix of $g$. the  signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of  graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Trees with given maximum degree minimizing the spectral radius

The spectral radius of a graph is the largest eigenvalue of the adjacency matrix of the graph. Let T (n,∆, l) be the tree which minimizes the spectral radius of all trees of order n with exactly l vertices of maximum degree ∆. In this paper, T (n,∆, l) is determined for ∆ = 3, and for l ≤ 3 and n large enough. It is proven that for sufficiently large n, T (n, 3, l) is a caterpillar with (almost...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 40  شماره 4

صفحات  1027- 1045

تاریخ انتشار 2014-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023