Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

نویسنده

  • Saeed Vatankhah Assistant Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran
چکیده مقاله:

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that projects the problem onto a Krylov subspace with a significantly reduced dimension. The model matrix of the projected system inherits the ill-conditioning of the original matrix, but the spectrum of the projected system accurately captures only a portion of the full spectrum. Equipped with the singular value decomposition of the projected system matrix, the solution of the projected problem is expressed using a filtered singular value expansion. This expansion depends on a regularization parameter which is determined using the method of Generalized Cross Validation (GCV), but here it is used for the truncated spectrum. This new technique, Truncated GCV (TGCV), is more effective compared with the standard GCV method. Numerical results using a synthetic example and real data demonstrate the efficiency of the presented algorithm.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Golub-Kahan Bidiagonalization and Stopping Criteria

The Golub–Kahan bidiagonalization algorithm has been widely used in solving leastsquares problems and in the computation of the SVD of rectangular matrices. Here we propose an algorithm based on the Golub–Kahan process for the solution of augmented systems that minimizes the norm of the error and, in particular, we propose a novel estimator of the error similar to the one proposed by Hestenes a...

متن کامل

Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data

Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...

متن کامل

Band Generalization of the Golub-Kahan Bidiagonalization, Generalized Jacobi Matrices, and the Core Problem

The concept of the core problem in total least squares (TLS) problems was introduced in [C. C. Paige and Z. Strakoš, SIAM J. Matrix Anal. Appl., 27, 2006, pp. 861–875]. It is based on orthogonal transformations such that the resulting problem decomposes into two independent parts, with one of the parts having trivial (zero) right-hand side and maximal dimensions, and the other part with nonzero...

متن کامل

Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems

We consider the solution of large linear systems of equations that arise from the discretization of ill-posed problems. The matrix has a Kronecker product structure and the right-hand side is contaminated by measurement error. Problems of this kind arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel and in...

متن کامل

GCV for Tikhonov regularization via global Golub-Kahan decomposition

Generalized Cross Validation (GCV) is a popular approach to determining the regularization parameter in Tikhonov regularization. The regularization parameter is chosen by minimizing an expression, which is easy to evaluate for small-scale problems, but prohibitively expensive to compute for large-scale ones. This paper describes a novel method, based on Gauss-type quadrature, for determining up...

متن کامل

3D Inversion of Magnetic Data through Wavelet based Regularization Method

This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 44  شماره 4

صفحات  29- 39

تاریخ انتشار 2018-12-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023