Iterative methods for finding nearest common fixed points of a countable family of quasi-Lipschitzian mappings

نویسندگان

  • Satit Saejung Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand
  • Weerayuth Nilsrakoo Department of Mathematics, Statistics and Computer, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
چکیده مقاله:

We prove a strong convergence result for a sequence generated by Halpern's type iteration for approximating a common fixed point of a countable family of quasi-Lipschitzian mappings in a real Hilbert space. Consequently, we apply our results to the problem of finding a common fixed point of asymptotically nonexpansive mappings, an equilibrium problem, and a variational inequality problem for continuous monotone mappings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

iterative methods for finding nearest common fixed points of a countable family of quasi-lipschitzian mappings

we prove a strong convergence result for a sequence generated by halpern's type iteration for approximating a common fixed point of a countable family of quasi-lipschitzian mappings in a real hilbert space. consequently, we apply our results to the problem of finding a common fixed point of asymptotically nonexpansive mappings, an equilibrium problem, and a variational inequality problem for co...

متن کامل

A new one-step iterative process for approximating common fixed points of a countable family of quasi-nonexpansive multi-valued mappings in CAT(0) spaces

‎In this paper‎, ‎we propose a new one-step iterative process for a‎ ‎countable family of quasi-nonexpansive multi-valued mappings in a‎ ‎CAT(0) space‎. ‎We also prove strong and $Delta$-convergence theorems‎ ‎of the proposed iterative process under some control conditions‎. ‎Our‎ ‎main results extend and generalize many results in the literature.

متن کامل

Finding Common Fixed Points of a Countable Family of Nonexpansive Mappings in a Banach Space

The main purpose of this paper is to study an iteration procedure for finding a common fixed point of a countable family of nonexpansive mappings in Banach spaces. We introduce a Mann type iteration procedure. Then we prove that such a sequence converges weakly to a common fixed point of a countable family of nonexpansive mappings. Moreover, we apply our result to the problem of finding a commo...

متن کامل

An Explicit Viscosity Iterative Algorithm for Finding Fixed Points of Two Noncommutative Nonexpansive Mappings

We suggest an explicit viscosity iterative algorithm for finding a common element in the set of solutions of the general equilibrium problem system (GEPS) and the set of all common fixed points of two noncommuting nonexpansive self mappings in the real Hilbert space.  

متن کامل

Approximation of Common Fixed Points for a Family of Non- Lipschitzian Mappings

In this paper, we first introduce a family S = {Sn : C → C} of non-Lipschitzian mappings, called total asymptotically nonexpansive (briefly, TAN) on a nonempty closed convex subset C of a real Banach space X, and next give necessary and sufficient conditions for strong convergence of the sequence {xn} defined recursively by the algorithm xn+1 = Snxn, n ≥ 1, starting from an initial guess x1 ∈ C...

متن کامل

Common fixed points of a finite family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces

In this paper, we introduce a one-step iterative scheme for finding a common fixed point of a finite family of multivalued quasi-nonexpansive mappings in a real uniformly convex Banach space. We establish weak and strong convergence theorems of the propose iterative scheme under some appropriate conditions.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 38  شماره 4

صفحات  1047- 1061

تاریخ انتشار 2012-12-15

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023