Inverse Boundary Design Problem of Combined Radiation-convection Heat Transfer in Laminar Recess Flow

نویسندگان

چکیده مقاله:

In the present work, an inverse analysis of combined radiation and laminar forced convection heat transfer in a two-dimensional channel with variable cross sections is performed. The conjugate gradient method is used to find the temperature distribution over the heater surface to satisfy the prescribed temperature and heat flux distributions over the design surface. The fluid is considered to be a gray participating medium with absorption, emission and isotropic scattering. The discrete ordinate method is used to solve the radiative transfer equation. The effect of radiation-conduction parameter is studied on the amount of heat transfer from the heater surface.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugate problem of combined radiation and laminar forced convection separated flow

This paper presents a numerical investigation for laminar forced convection flow of a radiating gas in a rectangular duct with a solid element that makes a backward facing step. The fluid is treated as a gray, absorbing, emitting and scattering medium. The governing differential equations consisting the continuity, momentum and energy are solved numerically by the computational fluid dynamics t...

متن کامل

Combined Radiation and Natural Convection in Participating Laminar Flow Over a Vertical Circular Pin

The interaction of thermal radiation with conduction and laminar natural convection in a vertical circular pin, situated at participating gas, is numerically investigated. An absorbing and emitting gas is considered, and treated to be a gray participating media. Under the idealizing of gray gas, the Rosselan4 approximation is employed to describe the radiative heat flux in the energy equation. ...

متن کامل

Heat Transfer Enhancement and Entropy Generation of Nanofluids Laminar Convection in Microchannels with Flow Control Devices

The heat transfer enhancement and entropy generation of Al2O3-water nanofluids laminar convective flow in the microchannels with flow control devices (cylinder, rectangle, protrusion, and v-groove) were investigated in this research. The effects of the geometrical structure of the microchannel, nanofluids concentration φ(0%–3%), and Reynolds number Re (50–300) were comparatively studied by mean...

متن کامل

Laminar Flow Heat Transfer of a Pseudoplastic Fluid through a Double Pipe Heat Exchanger

An experimental study was carried out to obtain the mean convective heat transfer coefficient of aqueous carboximethyl cellulose (CMC) solutions in double-pipe heat <span style="font-size: 10pt; color:...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

Investigation of Laminar Pulsating Nanofluid Flow and Heat Transfer in a Rectangular Channel

In this study, two-dimensional pulsating unsteady flow of nanofluid through a rectangular channel with isothermal walls is investigated numerically. The set of resultant algebraic equations is solved simultaneously using SIMPLE algorithm to obtain the velocity and pressure distribution within the channel. The effects of several parameters, such as volume fraction of different nanoparticles, Rey...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 29  شماره 3

صفحات  394- 402

تاریخ انتشار 2016-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023