Intrusion Detection in IOT based Networks Using Double Discriminant Analysis

نویسنده

  • Maryam Imani Department of Electrical Engineering (Communication), Tarbiat Modares University
چکیده مقاله:

Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the normal behavior. So, classification of connections in IOT based networks is a hard and challenging task. In this paper, an intrusion detection framework is proposed for classification of various attacks and separation of them from the normal connections. The double discriminant embedding (DDE) method is used to transform the original feature space of data. This transform is implemented in two steps. In the first step, the difference between the features is maximized; and in the second one, the difference between classes is increased. The extracted features not only have less overlapping with respect to each other and contain less redundant information but also they provide more separation between different classes. The extracted features are fed to the support vector machine (SVM) with polynomial kernel for classification. The experiments on NSL-KDD dataset have shown improvement of SVM when DDE features are used.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection in Wireless Sensor Networks using Genetic Algorithm

Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...

متن کامل

Remote Attack Detection Method in IDA: MLSI-Based Intrusion Detection using Discriminant Analysis

In order to detect intrusions, IDA (Intrusion Detection Agent system) initially monitors system logs in order to discover an MLSI { which is an certain event which in many cases occurs during an intrusion. If an MLSI is found, then IDA judges whether the MLSI is accompanied by an intrusion. We adopt discriminant analysis to analyze information after IDA detects an MLSI in a remote attack. Discr...

متن کامل

Improving Intrusion Detection using Genetic Linear Discriminant Analysis

The objective of this research is to propose an efficient soft computing approach with high detection rates and low false alarms while maintaining low cost and shorter detection time for intrusion detection. Our results were promising as they showed the new proposed system, hybrid feature selection approach of Linear Discriminant Analysis and Genetic Algorithm (GA) called Genetic Linear Discrim...

متن کامل

Feature Reduction for Intrusion Detection Using Linear Discriminant Analysis

Intrusion detection is one of core technologies of computer security. It is required to protect the security of computer network systems. Most of existing IDs use all features in the network packet to look for known intrusive patterns. Some of these features are irrelevant or redundant. A well-defined feature extraction algorithm makes the classification process more effective and efficient. Th...

متن کامل

intrusion detection in wireless sensor networks using genetic algorithm

wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. routing attacks on the networks, where a malicious node from sending data to the base station is perceived. in this article, a method that can be used to transfer the data securely to prevent attacks...

متن کامل

crop detection and positioning in the field using discriminant analysis and neural networks based on shape features

development of an autonomous weeding machine requires a vision system capable of detecting and locating the position of the crop. it is important for the vision system to be able to recognize the accurate position of the crop stem to be protected during weeding. several shape features of corn plants and common weed species in the location were extracted by means of morphological operations. eff...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 51  شماره 2

صفحات  13- 13

تاریخ انتشار 2019-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023