Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator
نویسنده
چکیده مقاله:
By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf
منابع مشابه
Existence and Multiplicity of Solutions for a Steklov Problem Involving the P(x)-laplace Operator
In this article we study the nonlinear Steklov boundary-value problem ∆p(x)u = |u|p(x)−2u in Ω, |∇u|p(x)−2 ∂u ∂ν = λf(x, u) on ∂Ω. Using the variational method, under appropriate assumptions on f , we obtain results on existence and multiplicity of solutions.
متن کاملInfinitely many solutions for a class of hemivariational inequalities involving p(x)-Laplacian
In this paper hemivariational inequality with nonhomogeneous Neumann boundary condition is investigated. The existence of infinitely many small solutions involving a class of p(x)−Laplacian equation in a smooth bounded domain is established. Our main tool is based on a version of the symmetric mountain pass lemma due to Kajikiya and the principle of symmetric criticality for a locally Lipschitz...
متن کاملTwo-Parameter Eigenvalues Steklov Problem involving the p-Laplacian
We study the existence of eigenvalues for a two parameter Steklov eigenvalues problem with weights. Moreover, we prove the simplicity and the isolation results of the principal eigenvalue. Finally, we obtain the continuity and the differentiability of this principal eigenvalue. AMS Subject Classifications: 35J60, 35B33.
متن کاملSTEKLOV PROBLEMS INVOLVING THE p(x)-LAPLACIAN
Under suitable assumptions on the potential of the nonlinearity, we study the existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplacian. Our approach is based on variational methods.
متن کاملInfinitely Many Solutions for a Robin Boundary Value Problem
Aixia Qian1 and Chong Li2 1 School of Mathematic Sciences, Qufu Normal University, Qufu Shandong 273165, China 2 Institute of Mathematics, AMSS, Academia Sinica, Beijing 100080, China Correspondence should be addressed to Aixia Qian, [email protected] and Chong Li, [email protected] Received 29 August 2009; Accepted 7 November 2009 Academic Editor: Wenming Zou Copyright q 2010 A. Qian and C. L...
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 2
صفحات 173- 184
تاریخ انتشار 2019-02
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023