Incompressible laminar flow computations by an upwind least-squares meshless method

نویسنده

  • M. Y. Hashemi Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz, 53751-71379, Iran
چکیده مقاله:

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be connected to form a mesh and decrease the difficulty of meshing, particularly around complex geometries. In the literature, it has been shown that the generation of points in a domain by the advancing front technique is an order of magnitude faster than the unstructured mesh for a 3D configuration. The Navier–Stokes solver is based on the artificial compressibility approach and the numerical methodology is based on the higher-order characteristic-based (CB) discretization. The main objective of this research is to use the CB scheme in order to prevent instabilities. Using this inherent upwind technique for estimating convection variables at the mid-point, no artificial viscosity is required at high Reynolds number. The Taylor least-squares method was used for the calculation of spatial derivatives with normalized Gaussian weight functions. An explicit four-stage Runge-Kutta scheme with modified coefficients was used for the discretized equations. To accelerate convergence, local time stepping was used in any explicit iteration for steady state test cases and the residual smoothing techniques were used to converge acceleration. The capabilities of the developed 2D incompressible Navier-Stokes code with the proposed meshless method were demonstrated by flow computations in a lid-driven cavity at four Reynolds numbers. The obtained results using the new proposed scheme indicated a good agreement with the standard benchmark solutions in the literature. It was found that using the third order accuracy for the proposed method could be more efficient than its second order accuracy discretization in terms of computational time.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Squares Kinetic Upwind Mesh-free Method

Least squares kinetic upwind mesh-free (LSKUM) method has been the subject of research over twenty years in our research group. LSKUM method requires a cloud (W) of points or nodes and connectivity N(P 0 ) for every 0 P Î W . The connectivity of P0 is a set of neighbours 0 ( ) i P N P Î of P0. The cloud can be a simple cloud, Cartesian cloud or chimera cloud or can be obtained rapidly using adv...

متن کامل

A non-conforming least-squares finite element method for incompressible fluid flow problems

In this paper, we develop least-squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity– vorticity–pressure Stokes system, which uses a piecewise divergence-free basis for the velocity and standard C 0 elements for the vorticity and the pressure. The new method, which we ...

متن کامل

H- and P- Adaptive Incompressible Flow Solutions on Cartesian Grids Using Least Squares Spectral Element Method

Use of numerical solutions to flow phenomena has become increasingly common among non-engineering disciplines such as medical sciences. This increasing interest can be promoted by the ability of solvers to obtain accurate numerical solutions without the need for expertise in some specific subjects such as grid generation or automatic grid adaptation. In this work, an incompressible flow solver ...

متن کامل

Least – Squares Method For Estimating Diffusion Coefficient

 Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 2

صفحات  147- 160

تاریخ انتشار 2016-03-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023