Improvements of two preconditioned AOR iterative methods for Z-matrices

نویسندگان

چکیده مقاله:

‎In this paper‎, ‎we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix‎. ‎These methods can be considered as improvements of two previously presented ones in the literature‎. ‎Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners‎.‎

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

improvements of two preconditioned aor iterative methods for z-matrices

‎in this paper‎, ‎we propose two preconditioned aor iterative methods to solve systems of linear equations whose coefficient matrices are z-matrix‎. ‎these methods can be considered as improvements of two previously presented ones in the literature‎. ‎finally some numerical experiments are given to show the effectiveness of the proposed preconditioners‎.‎

متن کامل

Convergence Analysis of Some New Preconditioned AOR Iterative Methods for L-matrices

In this paper, we present a new preconditioner which generalizes two known preconditioners proposed by Wang et al. (2009) and A. J. Li (2011), and prove that the convergence rate of the AOR method with the new preconditioner is faster than the preconditioners introduced by Wang et al. Moreover, we propose other two new preconditioners and study the convergence rates of the new preconditioned AO...

متن کامل

Improving AOR Iterative Methods For Irreducible L-matrices

A preconditioned AOR iterative method is proposed with the preconditioner I + S∗ αβ. Some comparison theorems are given when the coefficient matrix of linear system A is an irreducible L−matrix. The convergence rate of AOR iterative method with the preconditioner I + S∗ αβ is faster than the convergence rate with the preconditioner I + Sα by Li et al. Numerical example verifies comparison theor...

متن کامل

Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices

In this paper, we present the preconditioned mixed-type splitting iterative method for solving the linear systems, Ax = b, where A is a Z-matrix. And we give some comparison theorems to show that the convergence rate of the preconditioned mixed-type splitting iterative method is faster than that of the mixed-type splitting iterative method. Finally, we give a numerical example to illustrate our...

متن کامل

Preconditioned Gauss-seidel Iterative Method for Z-matrices Linear Systems

For Ax = b, it has recently been reported that the convergence of the preconditioned Gauss-Seidel iterative method which uses a matrix of the type P = I + S (α) to perform certain elementary row operations on is faster than the basic Gauss-Seidel method. In this paper, we discuss the adaptive Gauss-Seidel iterative method which uses P = I + S (α) + K̄ (β) as a preconditioner. We present some com...

متن کامل

Convergence Analysis of Preconditioned AOR Iterative Method for Linear Systems

MHmatrices appear in many areas of science and engineering, for example, in the solution of the linear complementarity problem LCP in optimization theory and in the solution of large systems for real-time changes of data in fluid analysis in car industry. Classical stationary iterative methods used for the solution of linear systems have been shown to convergence for this class of matrices. In ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 40  شماره 2

صفحات  357- 371

تاریخ انتشار 2014-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023