Improvement of generative adversarial networks for automatic text-to-image generation

نویسندگان

چکیده مقاله:

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed scheme focuses on using more information to produce high-resolution images, using competitive productive networks. Implementing programs related to this field require massive processing resources. Therefore, the proposed method was implemented and tested on a cluster with 25 GPUs using the hardware platform of the University of Copenhagen. The experiments were performed on CUB-200 and ids-ade datasets. The experimental results show that the proposed model can produce higher quality images than the two basic models StackGAN and AttGAN.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Generative Adversarial Text to Image Synthesis

Automatic synthesis of realistic images from text would be interesting and useful, but current AI systems are still far from this goal. However, in recent years generic and powerful recurrent neural network architectures have been developed to learn discriminative text feature representations. Meanwhile, deep convolutional generative adversarial networks (GANs) have begun to generate highly com...

متن کامل

AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

In this paper, we propose an Attentional Generative Adversarial Network (AttnGAN) that allows attention-driven, multi-stage refinement for fine-grained text-to-image generation. With a novel attentional generative network, the AttnGAN can synthesize fine-grained details at different subregions of the image by paying attentions to the relevant words in the natural language description. In additi...

متن کامل

LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation

We present LR-GAN: an adversarial image generation model which takes scene structure and context into account. Unlike previous generative adversarial networks (GANs), the proposed GAN learns to generate image background and foregrounds separately and recursively, and stitch the foregrounds on the background in a contextually relevant manner to produce a complete natural image. For each foregrou...

متن کامل

Text Generation using Generative Adversarial Training

Generative models reduce the need of acquiring laborious labeling for the dataset. Text generation techniques can be applied for improving language models, machine translation, summarization, and captioning. This project experiments on different recurrent neural network models to build generative adversarial networks for generating texts from noise. The trained generator is capable of producing...

متن کامل

Hand Grasp Image Generation Using Generative Adversarial Networks

Recent advances in deep neural networks have pushed many computer vision research areas forward dramatically. Most of these works are based on discriminative models for classification or detection problems. In this project, we are interested in using deep neural networks for generative models. In particular, we seek to train deep networks to automatically generate images of hands with particula...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 19  شماره 4

صفحات  37- 48

تاریخ انتشار 2023-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023