IDEALS WITH (d1, . . . , dm)-LINEAR QUOTIENTS
نویسنده
چکیده مقاله:
In this paper, we introduce the class of ideals with $(d_1,ldots,d_m)$-linear quotients generalizing the class of ideals with linear quotients. Under suitable conditions we control the numerical invariants of a minimal free resolution of ideals with $(d_1,ldots,d_m)$-linear quotients. In particular we show that their first module of syzygies is a componentwise linear module.
منابع مشابه
Monomial Ideals with Linear Quotients Whose Taylor Resolutions Are Minimal
We study when Taylor resolutions of monomial ideals are minimal, particularly for ideals with linear quotients.
متن کاملGraded Betti Numbers of Ideals with Linear Quotients
In this paper we show that every ideal with linear quotients is componentwise linear. We also generalize the Eliahou-Kervaire formula for graded Betti numbers of stable ideals to homogeneous ideals with linear quotients.
متن کاملAlgebra Handout 2: Ideals and Quotients
Remark (Ideals versus subrings): It is worthwhile to compare these two notions; they are related, but with subtle and important differences. Both an ideal I and a subring S of a ring R are subsets of R which are subgroups under addition and are stable under multiplication. However, each has an additional property: for an ideal it is the absorption property (IR2). For instance, the integers Z ar...
متن کاملIdeals and Quotients of Diagonally Quasi-Symmetric Functions
In 2004, J.-C. Aval, F. Bergeron and N. Bergeron studied the algebra of diagonally quasi-symmetric functions DQSym in the ring Q[x,y] with two sets of variables. They made conjectures on the structure of the quotient Q[x,y]/〈DQSym〉, which is a quasi-symmetric analogue of the diagonal harmonic polynomials. In this paper, we construct a Hilbert basis for this quotient when there are infinitely ma...
متن کاملThe Lefschetz Property for Componentwise Linear Ideals and Gotzmann Ideals
For standard graded Artinian K-algebras defined by componentwise linear ideals and Gotzmann ideals, we give conditions for the weak Lefschetz property in terms of numerical invariants of the defining ideals.
متن کاملLinear complexity of Legendre-polynomial quotients
We continue to investigate binary sequence (fu) over {0, 1} defined by (−1)fu = ( (u−u)/p p ) for integers u ≥ 0, where ( · p ) is the Legendre symbol and we restrict ( 0 p ) = 1. In an earlier work, the linear complexity of (fu) was determined for w = p − 1 under the assumption of 2p−1 6≡ 1 (mod p2). In this work, we give possible values on the linear complexity of (fu) for all 1 ≤ w < p− 1 un...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 1
صفحات 29- 42
تاریخ انتشار 2018-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023