Hyers-Ulam stability of K-Fibonacci functional equation
نویسندگان
چکیده مقاله:
Let denote by Fk,n the nth k-Fibonacci number where Fk,n = kFk,n−1+Fk,n−2 for n 2 with initial conditions Fk,0 = 0, Fk,1 = 1, we may derive a functionalequation f(k, x) = kf(k, x − 1) + f(k, x − 2). In this paper, we solve thisequation and prove its Hyere-Ulam stability in the class of functions f : N×R ! X,where X is a real Banach space.
منابع مشابه
Hyers-Ulam stability of Volterra integral equation
We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.
متن کاملGeneralized Hyers - Ulam - Rassias Stability of a Quadratic Functional Equation
In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of a new quadratic functional equation f (2x y) 4f (x) f (y) f (x y) f (x y) + = + + + − −
متن کاملHyers-Ulam stability of a generalized trigonometric-quadratic functional equation
The Hyers-Ulam stability of the generalized trigonometric-quadratic functional equation ( ) ( ) ( ) ( ) ( ) ( ) 2 F x y G x y H x K y L x M y + − − = + + over the domain of an abelian group and the range of the complex field is established based on the assumption of the unboundedness of the function K. Subject to certain natural conditions, explicit shapes of the functions H and K are determine...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 42- 49
تاریخ انتشار 2011-01-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023