Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
نویسنده
چکیده مقاله:
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local information to develop a robust face recognition system.In this papers it is proposed that hybridization of global and local facial features and combination of 2D and 3D modality helps in improving performance of face recognition system. The main issue of existing face recognition systems is the high false accept rate which is not desirable when security is the main concern. Most of the existing face recognition techniques overcome these problems with some constraints. However, the proposed methodology has achieved better results and handled all the three issues successfully. Also the use of 2.5D images (Depth Map) and dimensionality reduced data (Eigen faces) has shown that the system is computationally reasonable.
منابع مشابه
Multi-Modal 2D and 3D Biometrics for Face Recognition
Results are presented for the largest experimental study to date that investigates the comparison and combination of 2D and 3D face data for biometric recognition. To our knowledge, this is also the only such study to incorporate significant time lapse between gallery and probe image acquisition. Recognition results are presented for gallery and probe datasets of 166 subjects imaged in both 2D ...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملMulti Modal Face Recognition Using Block Based Curvelet Features
In this paper, we present multimodal 2D +3D face recognition method using block based curvelet features. The 3D surface of face (Depth Map) is computed from the stereo face images using stereo vision technique. The statistical measures such as mean, standard deviation, variance and entropy are extracted from each block of curvelet subband for both depth and intensity images independently.In ord...
متن کاملMulti Modal Face Recognition Using Block Based Curvelet Features
In this paper, we present multimodal 2D +3D face recognition method using block based curvelet features. The 3D surface of face (Depth Map) is computed from the stereo face images using stereo vision technique. The statistical measures such as mean, standard deviation, variance and entropy are extracted from each block of curvelet subband for both depth and intensity images independently.In ord...
متن کامل3D Face Analysis for Facial Expression Recognition
In this paper, we investigate the person-independent 3D facial expression recognition. A 3D shape analysis is applied on local regions of 3D face scan. The correspondent regions of different faces under different expressions, are extracted and represented by a set of closed that capture their shapes. A framework is applied to quantify the deformations between curves and compute the geodesic len...
متن کاملA survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition
This survey focuses on recognition performed by matching models of the three-dimensional shape of the face, either alone or in combination with matching corresponding two-dimensional intensity images. Research trends to date are summarized, and challenges confronting the development of more accurate three-dimensional face recognition are identified. These challenges include the need for better ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 1
صفحات 1- 8
تاریخ انتشار 2020-02-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023