Heat Transfer Study of Perforated Fin under Forced Convection
نویسنده
چکیده مقاله:
Fins are protrusions on a heat transfer surface to augment heat transfer rate from it. The increase in area exposed to convection in case of finned surfaces results in increased heat transfer rate. In this study heat transfer characteristics of a pin fin with perforation is numerically analyzed. A pin fin is fabricated and experiments are done under forced convection conditions. The experimental results are used for validating the numerical model. The numerical analysis of perforated pin fin with varying parameters such as diameter of perforation, location of perforation and number of perforations is done. The perforated pin fin is found to enhance heat transfer rate compared to ordinary pin fin with a lesser material requirement.
منابع مشابه
An Experimental Study of Heat Transfer During Forced Air Convection
Cast aluminum alloys are usually subject to solution treatment, quenching, and aging hardening for improved mechanical properties. Cooling rate during quenching plays an important role in residual stress, distortion, and mechanical property distributions in the resultant cast aluminum components. As the cooling rates of work pieces heavily depend on the interfacial heat transfer coefficient (HT...
متن کاملNumerical simulation of laminar convection heat transfer from an array of circular perforated fins
The present paper reports the laminar fluid flow and heat transfer of a heated array of circular-perforated and solid fins mounted over a flat surface using the finite-volume method. One to four circular cross-sectional perforations are made along the length of the fins. The SIMPLE algorithm is used for pressure-velocity coupling and the second order upwind technique is employed to discreti...
متن کاملAnalysis of variance of nanofluid heat transfer data for forced convection in horizontal spirally coiled tubes
In the present study, an experimental study is carried out to investigate the effect of adding Al and Cu nanoparticles to the base fluid (water) on the heat transfer rate in a spirally coiled tube. The spirally coiled tube is fabricated from the straight copper tube with the inner and outer coil diameters of 100 and 420 mm, respectively. The experiments have been done for water and two types of...
متن کاملForced Convection: Heat Transfer from Copper Cylinders to Air
Three copper cylinders of diameter 1/4”, 3/8” and1/2” were heated and then immersed in an air stream flowing through a cylindrical pipe. The temperature change of the cylinders with respect to time was measured at different air flow rates. With this data, the Nusselt, Reynolds and Prandtl numbers were calculated and correlated. This correlation was compared to ones established by Sherwood-Pigfo...
متن کاملAn Investigation into Forced Convection Heat Transfer through Porous Media
Theoretical and experimental investigations of forced convection heat transfer from a heated flat plate embedded in porous media with a constant heat flux had been carried out in the present work. The experimental investigation included a set of experiments carried out to study the effect of Reynolds number and heat flux on the temperature profile and local Nusselt number. The investigation cov...
متن کاملForced Convection Heat Transfer of Giesekus Viscoelastic Fluid in Concentric Annulus with both Cylinders Rotation
A theoretical solution is presented for the forced convection heat transfer of a viscoelastic fluid obeying the Giesekus constitutive equation in a concentric annulus under steady state, laminar, and purely tangential flow. A relative rotational motion exists between the inner and the outer cylinders, which induces the flow. A constant temperature was set in both cylinders, in this study. The f...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 28 شماره 10
صفحات 1500- 1506
تاریخ انتشار 2015-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023