Glucosamine Conjugated Gadolinium (III) Oxide Nanoparticles as a Novel Targeted Contrast Agent for Cancer Diagnosis in MRI
نویسندگان
چکیده مقاله:
Background: Glucose transporter (Glut), a cellular transmembrane receptor, has a key role in the metabolism of cell glucose and is also associated with various human carcinomas.Objective: In this study, we evaluated a magnetic resonance (MR) imaging contrast agent for tumor detection based on paramagnetic gadolinium oxide (Gd2O3) coated polycyclodextrin (PCD) and modified with glucose (Gd2O3@PCD-Glu) for the targeting of overexpressed glucose receptors.Material and Methods: In this experimental study, 3T magnetic resonance imaging (MRI) scanner was used to assess the specific interactions between Glut1-overexpressing tumor cells (MDA-MB-231) and Gd2O3@PCD-Glu NPs. Furthermore, the capacity of transporting Gd2O3@PCD-Glu NPs to tumor cells was evaluated. Results: It was found that the acquired MRI T1 signal intensity of MDA-MB-231 cells that were treated with the Gd2O3@PCD-Glu NPs increased significantly. Based on the results obtained, Gd2O3@PCD-Glu NPs can be applied in targeting Glut1-overexpressing tumor cells in vivo, as well as an MRI-targeted tumor agent to enhance tumor diagnosis. Conclusion: Results have shown that glucose-shell of magnetic nanoparticles has a key role in diagnosing cancer cells of high metabolic activity.
منابع مشابه
aptamer-conjugated magnetic nanoparticles as targeted magnetic resonance imaging contrast agent for breast cancer
early detection of breast cancer is the most effective way to improve the survival rate in women. magnetic resonance imaging (mri) offers high spatial resolution and good anatomic details, and its lower sensitivity can be improved by using targeted molecular imaging. in this study, as1411 aptamer was conjugated to fe3o4@au nanoparticles for specific targeting of 4t1 cells that overexpress nucle...
متن کاملErlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI
We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly ...
متن کاملAptamer-conjugated Magnetic Nanoparticles as Targeted Magnetic Resonance Imaging Contrast Agent for Breast Cancer
Early detection of breast cancer is the most effective way to improve the survival rate in women. Magnetic resonance imaging (MRI) offers high spatial resolution and good anatomic details, and its lower sensitivity can be improved by using targeted molecular imaging. In this study, AS1411 aptamer was conjugated to Fe3O4@Au nanoparticles for specific targeting of mouse mammary carcinoma (4T1) ce...
متن کاملA novel MRI contrast agent synthesized by ion exchange method
Objective: In this study, the zeolite-coated iron oxide nanoparticles were evaluated as MRI contrast agent and effect of the nanocomposite synthesis method on MRI contrast was tested. Materials and Methods: Ion exchange method was used for synthesis of iron oxide-zeolite and the as prepared nanocomposite was characterized by XRD, FESEM and TEM. The nanocomposite toxicity in the cell culture, a...
متن کاملA Novel Gadolinium-Based Contrast Agent Targeted to Cathepsin-D
slice images of Gd-DTPA, Gd-DOTACAT and 10% BSA at 37oC at 9.4T. Figure 2. Relaxation rate (R1 = 1/T1) as a function of concentration. Gd-DOTACAT has a greater relaxivity 6.9 (mM s) than clinically used Gd-DTPA (Magnevist®) of 3.2 (mM s). Figure 3. Signal intensity plots from 3 regions of interest: brain tissue, cerebral and non-cerebral blood vessels. There was an increase in signal intensity ...
متن کاملA Review of Recent Advances in Iron Oxide Nanoparticles as a Magnetic Agent in Cancer Diagnosis and Treatment
Aims In recent years, iron oxide nanoparticles have shown incredible possibilities in biomedical applications due to their non-toxic function in biological systems. Furthermore, these nanoparticles have multifunctional applications, such as antibacterial, antifungal, and anticancer effects in medicine due to their magnetic properties. Methods & Materials In this article, 49 articles related t...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 1
صفحات 25- 38
تاریخ انتشار 2020-02-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023