FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA
نویسندگان
چکیده مقاله:
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
منابع مشابه
Big Data Classification using Fuzzy K-Nearest Neighbor
Because of the massive increase in the size of the data it becomes troublesome to perform effective analysis using the current traditional techniques. Big data put forward a lot of challenges due to its several characteristics like volume, velocity, variety, variability, value and complexity. Today there is not only a necessity for efficient data mining techniques to process large volume of dat...
متن کاملImproved Fuzzy-Optimally Weighted Nearest Neighbor Strategy to Classify Imbalanced Data
Learning from imbalanced data is one of the burning issues of the era. Traditional classification methods exhibit degradation in their performances while dealing with imbalanced data sets due to skewed distribution of data into classes. Among various suggested solutions, instance based weighted approaches secured the space in such cases. In this paper, we are proposing a new fuzzy weighted near...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملk-Nearest Neighbor Classification on Spatial Data
Classification of spatial data streams is crucial, since the training dataset changes often. Building a new classifier each time can be very costly with most techniques. In this situation, k-nearest neighbor (KNN) classification is a very good choice, since no residual classifier needs to be built ahead of time. KNN is extremely simple to implement and lends itself to a wide variety of variatio...
متن کاملK-Nearest Neighbor Classification Using Anatomized Data
This paper analyzes k nearest neighbor classification with training data anonymized using anatomy. Anatomy preserves all data values, but introduces uncertainty in the mapping between identifying and sensitive values. We first study the theoretical effect of the anatomized training data on the k nearest neighbor error rate bounds, nearest neighbor convergence rate, and Bayesian error. We then v...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 2 (SPRING)
صفحات 109- 114
تاریخ انتشار 2013-03-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023