Frames and Homogeneous Spaces
نویسنده
چکیده مقاله:
Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via the linear operator .
منابع مشابه
frames and homogeneous spaces
let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . in this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . as an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via the linear operator .
متن کاملWeighted Coorbit Spaces and Banach Frames on Homogeneous Spaces
This article is concerned with frame constructions on domains and manifolds. The starting point is a unitary group representation which is square integrable modulo a suitable subgroup and therefore gives rise to a generalized continuous wavelet transform. Then generalized coorbit spaces can be defined by collecting all functions for which this wavelet transform is contained in a weighted Lp-spa...
متن کاملCoorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to the Sphere
This paper is concerned with the construction of generalized Banach frames on homogeneous spaces. The major tool is a unitary group representation which is square integrable modulo a certain subgroup. By means of this representation, generalized coorbit spaces can be defined. Moreover, we can construct a specific reproducing kernel which, after a judicious discretization, gives rise to atomic d...
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 22 شماره 4
صفحات 355- 361
تاریخ انتشار 2011-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023