Flow Pattern and Oil Holdup Prediction in Vertical Oil–Water Two–Phase Flow Using Pressure Fluctuation Signal
نویسندگان
چکیده مقاله:
In this work, the feasibility of flow pattern and oil hold up the prediction for vertical upward oil–water two–phase flow using pressure fluctuation signals was experimentally investigated. Water and diesel fuel were selected as immiscible liquids. Oil hold up was measured by Quick Closing Valve (QCV) technique, and five flow patterns were identified using high-speed photography through a transparent test section with Inner Diameter (ID) of 0.0254 m. The observed flow patterns were Dispersed Oil in Water (D O/W), Dispersed Water in Oil (D W/O), Transition Flow (TF), Very FineDispersed Oil in Water (VFD O/W) and a new flow pattern called Dispersed Oil Slug & Water in Water (D OS& W/W). The pressure fluctuation signals were also measured by a static pressure sensor and decomposed at five levels using wavelet transform. Then, standard deviation values of decomposition levels were used as input parameters of a Probabilistic Neural Network (PNN) to train the network for predicting the flow patterns. In addition, some considered numerical values for actual flow patterns together with the signal energy value of each level were used as input parameters of a MultiLayer Perceptron (MLP) network to estimate the oil holdup. The results indicated good accuracy for recognition of the flow patterns (accuracy of 100% and 95.8% for training data and testing data, respectively) and oil holdup (AAPE=9.6%, R=0.984 for training data and AAPE=8.07%, R=0.99 for testing data).
منابع مشابه
Flow Pattern Identification and Pressure Drop Calculation for Gas-Liquid Flow in a Horizontal Pipeline
Two phase gas-liquid flow pattern in a horizontal pipeline is predicted very accurately using a newly-developed analytical relation. The pattern identification is based on one of the most widely used graphs, the Baker diagram, modified in a way that compensates for the unrealistic oversimplifications of recent works. The Kern's method of pressure drop calculation is used to obtain the frict...
متن کاملPrediction of Pressure Gradient and Holdup in Small Eötvös Number Liquid-Liquid Segregated Flow
The segregated flow pattern, which occurs in a 26.1 mm diameter, horizontal, stainless steel test section, is investigated. Pressure gradient and in situ phase distribution data were obtained for different combinations of phase superficial velocities ranging from 0.05 m·s 1 to 0.96 m·s . For the current small Eötvös number liquid-liquid system (EoD 4.77), the dominant effect of interfacial tens...
متن کاملVisual Observation of Flow Regime Transition in Downward Vertical Gas-Liquid Flow Using Simple Mixer
Different flow patterns of downward gas-liquid two-phaseflow using simple mixer are studied in an experimental manner. An experimental setup is designed and fabricated to allow the visual observation of downward two-phase flow patterns and their transitions. The flow patterns are recorded by a 1200 frames per second high speed video camera. The quality of downward two-phase flow patterns photos...
متن کاملGas-non-Newtonian Liquid Flow Through Horizontal Pipe – Gas Holdup and Pressure Drop Prediction using Multilayer Perceptron
Prediction of the gas holdup and pressure drop in a horizontal pipe for gas-non-Newtonian liquid flow using Artificial Neural Networks (ANN) methodology have been reported in this paper from the data acquired from our earlier experiment. The ANN prediction is done using Multilayer Perceptrons (MLP) trained with three different algorithms, namely: Backpropagation (BP), Scaled Conjugate gradient ...
متن کاملCFD Simulation of Dry and Wet Pressure Drops and Flow Pattern in Catalytic Structured Packings
Type of packings and characteristics of their geometry can affect the flow behavior in the reactive distillation columns. KATAPAK SP is one the newest modular catalytic structured packings (MCSP) that has been used in the reactive distillation columns, recently. However, there is not any study on the hydrodynamics of this packing by using computational fluid dynamics. In the present work, a 3D ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 36 شماره 2
صفحات 125- 141
تاریخ انتشار 2017-05-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023