Fixed point results for Ʇ_Hθ- contractive mappings in orthogonal metric spaces
نویسنده
چکیده مقاله:
The main purpose of this research is to extend some fixed point results in orthogonal metric spaces. For this purpose, first, we investigate new mappings in this spaces. We introduce the new notions of functions. Then by using it, we define contractive mappings and then we establish and prove some fixed point theorems for such mappings in orthogonal metric spaces. Then by utilizing examples of the function we deduce some new consequences for these fixed point theorems. Also in this research paper we will give applications. As first application, we will show that many fixed point results in metric spaces endowed with a graph G can be deduced easily from fixed point theorems in orthogonal metric spaces. As another application, we will show that many fixed point results in partially ordered metric spaces can be deduced easily from fixed point theorems in orthogonal metric spaces. Indeed, in this paper in addition to extend some fixed point results in orthogonal metric spaces, we will show that our obtained results unify many fixed point results.
منابع مشابه
Coincident point and fixed point results for three self mappings in cone metric spaces
In this attempt we proved results on points of coincidence and common xed points for three selfmappings satisfying generalized contractive type conditions in cone metric spaces. Our results gen-eralizes some previous known results in the literature (eg. [5], [6])
متن کاملCoincidence and Common Fixed Point Results for $alpha$-$(psi,varphi)$-Contractive Mappings in Metric Spaces
Recently Samet et al. introduced the notion of $alpha$-$psi$-contractive type mappings and established some fixed point theorems in complete metric spaces. In this paper, we introduce $alpha$-$(psi,varphi)$-contractive mappings and stablish coincidence and common fixed point theorems for two mapping in complete metric spaces. We present some examples to illustrate our results. As application...
متن کاملOn Fixed Point Theorems for Contractive-type Mappings in Fuzzy Metric Spaces
In this paper, we provide two different kinds of fixed pointtheorems in fuzzy metric spaces. The first kind is for the fuzzy$varepsilon$-contractive type mappings and the second kind is forthe fuzzy order $psi$-contractive type mappings. They improve thecorresponding conclusions in the literature.
متن کاملFixed Point Results for Generalized Contractive Multimaps in Metric Spaces
The concept of generalized contractive multimaps in the setting of metric spaces is introduced, and the existence of fixed points for such maps is guaranteed under certain conditions. Consequently, our results either generalize or improve a number of fixed point results including the corresponding recent fixed point results of Ciric 2008 , Latif-Albar 2008 , Klim-Wardowski 2007 , and Feng-Liu 2...
متن کاملFixed point theorems for weakly contractive mappings on g-Metric spaces and a homotopy result
In this paper, we give some xed point theorems for '-weak contractivetype mappings on complete G-metric space, which was given by Zaed andSims [1]. Also a homotopy result is given.
متن کاملSOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES
In this paper, we introduce the notions of fuzzy $alpha$-Geraghty contraction type mapping and fuzzy $beta$-$varphi$-contractive mapping and establish some interesting results on the existence and uniqueness of fixed points for these two types of mappings in the setting of fuzzy metric spaces and non-Archimedean fuzzy metric spaces. The main results of our work generalize and extend some known ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 25
صفحات 71- 82
تاریخ انتشار 2020-08-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023