Fixed point approach to the Hyers-Ulam-Rassias approximation‎ ‎of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras

نویسندگان

  • A. Heidarzadegan Department of Mathematics, Beyza Branch, Islamic Azad University, Beyza, Iran.
  • A. Toorani Department of Mathematics, Beyza Branch, Islamic Azad University, Beyza, Iran.
  • H. Azadi Kenary Department of Mathematics, Beyza Branch, Islamic Azad University, Beyza, Iran.
چکیده مقاله:

‎In this paper‎, ‎using fixed point method‎, ‎we prove the generalized Hyers-Ulam stability of‎ ‎random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras‎ ‎and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfleft( m x_i‎ + ‎sum_{j=1~,ineq j}^m x_jright)+fleft(sum_{i=1}^m x_iright) right]$$‎ ‎The concept of Hyers-Ulam-Rassias stability originated from Th‎. ‎M.‎ ‎Rassias� stability theorem that appeared in his paper‎: ‎On the‎ ‎stability of the linear mapping in Banach spaces‎, ‎Proc‎. ‎Amer.‎ ‎Math‎. ‎Soc‎. ‎72 (1978)‎, ‎297-300.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fixed point approach to the hyers-ulam-rassias approximation‎ ‎of homomorphisms and derivations on non-archimedean random lie $c^*$-algebras

‎in this paper‎, ‎using fixed point method‎, ‎we prove the generalized hyers-ulam stability of‎ ‎random homomorphisms in random $c^*$-algebras and random lie $c^*$-algebras‎ ‎and of derivations on non-archimedean random c$^*$-algebras and non-archimedean random lie c$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

متن کامل

Hyers-ulam-rassias Stability of Jordan Homomorphisms on Banach Algebras

We prove that a Jordan homomorphism from a Banach algebra into a semisimple commutative Banach algebra is a ring homomorphism. Using a signum effectively, we can give a simple proof of the Hyers-Ulam-Rassias stability of a Jordan homomorphism between Banach algebras. As a direct corollary, we show that to each approximate Jordan homomorphism f from a Banach algebra into a semisimple commutative...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Hyers-Ulam-Rassias stability of n-Jordan *-homomorphisms on C*-algebras

In this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and Also investigate the Hyers-Ulam-Rassiasstability of n-jordan *-homomorphisms on C*-algebras.

متن کامل

Hyers-Ulam-Rassias stability of generalized derivations

One of the interesting questions in the theory of functional equations concerning the problem of the stability of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? The first stability problem was raised by Ulam during his talk at the University of Wisconsin in 194...

متن کامل

Hyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach

‎In this paper‎, ‎we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method‎.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 1

صفحات  55- 66

تاریخ انتشار 2014-06-30

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023