Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

نویسنده

چکیده مقاله:

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow up in Finite Time and Dynamics of Blow up Solutions for the L–critical Generalized Kdv Equation

In this paper, we are interested in the phenomenon of blow up in finite time (or formation of singularity in finite time) of solutions of the critical generalized KdV equation. Few results are known in the context of partial differential equations with a Hamiltonian structure. For the semilinear wave equation, or more generally for hyperbolic systems, the finite speed of propagation allows one ...

متن کامل

Blow-up for Parabolic and Hyperbolic Problems with Variable Exponents

In this paper we study the blow up problem for positive solutions of parabolic and hyperbolic problems with reaction terms of local and nonlocal type involving a variable exponent. We prove the existence of initial data such that the corresponding solutions blow up at a finite time.

متن کامل

Finite-time Blow-up of L-weak Solutions of an Aggregation Equation

Abstract. We consider the aggregation equation ut+∇· [(∇K)∗u)u]=0 with nonnegative initial data in L(R)∩L(R) for n≥2. We assume that K is rotationally invariant, nonnegative, decaying at infinity, with at worst a Lipschitz point at the origin. We prove existence, uniqueness, and continuation of solutions. Finite time blow-up (in the L norm) of solutions is proved when the kernel has precisely a...

متن کامل

Finite-time blow-up of solutions of an aggregation equation in R

We consider the aggregation equation ut + ∇ · (u∇K ∗ u) = 0 in R n, n ≥ 2, where K is a rotationally symmetric, nonnegative decaying kernel with a Lipschitz point at the origin, e.g. K(x) = e−|x|. We prove finite-time blow-up of solutions from specific smooth initial data, for which the problem is known to have short time existence of smooth solutions.

متن کامل

Simple explicit formulae for finite time blow up solutions to the complex KdV equation

Simple explicit formulae for finite time blow up solutions to the complex KdV equation are obtained via a Darboux transformation. Diffusions induced by perturbations are calculated. 2007 Elsevier Ltd. All rights reserved.

متن کامل

Finite Time Blow up for a Navier-stokes like Equation

We consider an equation similar to the Navier-Stokes equation. We show that there is initial data that exists in every Triebel-Lizorkin or Besov space (and hence in every Lebesgue and Sobolev space), such that after a finite time, the solution is in no Triebel-Lizorkin or Besov space (and hence in no Lebesgue or Sobolev space). The purpose is to show the limitations of the so called semigroup m...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 11  شماره 1

صفحات  37- 45

تاریخ انتشار 2020-01-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023