Fault Detection in Ring Based Smart LVDC Microgrid Using Ensemble of Decision Tree
نویسنده
چکیده مقاله:
In modern infrastructure, the demand for DC power-based appliances is rapidly increasing, and this phenomenon has created a positive impact on the acceptance of the DC microgrid. However, due to numerous issues such as the absence of zero crossing, bidirectional behaviour of sources, and different magnitudes of fault current during grid connected and islanded modes of operation, protecting DC microgrid remains a difficult task. Apart from these challenges, intermittent conditions are also a major challenge. Under such type scenarios, shadow conditions in the solar based DERs will reduce the desired output of the solar panels simultaneously in wind based DERs will be affected due to the low pressure of air. In this type of circumstances threshold setting based overcurrent relays may fail to sense the operational dynamics of the system. Therefore, in this manuscript, an ensemble of decision tree-based protection scheme is proposed to provide immunity against the stochastic conditions under the varying natures of the fault resistance. A total of 7150 test cases have been considered for validation of the protection scheme and all modules have been tested.
منابع مشابه
Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملFault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier
Microgrids have played an important role in distribution networks during recent years. DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...
متن کاملDecision tree based fault detection and classification in distance relaying
This paper presents a new approach for fault detection and classification in transmission line using Decision Tree (DT). The DT based fault detection algorithm uses 1/4th cycle data of fault currents from fault inception, to generate the optimal decision tree for fault detection. Similarly, the DT based classification algorithm takes half cycle data from fault inception of three phase currents ...
متن کاملProteomic mass spectra classification using decision tree based ensemble methods
MOTIVATION Modern mass spectrometry allows the determination of proteomic fingerprints of body fluids like serum, saliva or urine. These measurements can be used in many medical applications in order to diagnose the current state or predict the evolution of a disease. Recent developments in machine learning allow one to exploit such datasets, characterized by small numbers of very high-dimensio...
متن کاملAnomaly Detection using Decision Tree based Classifiers
as we know that with the help of Data mining techniques we can find out knowledge in terms of various characteristics and patterns. In this regard this paper presents finding out of anomalies/ outliers using various decision tree based classifiers viz. Best-first Decision Tree, Functional Tree, Logistic Model Tree, J48 and Random Forest decision tree. Three real world datasets has been used in ...
متن کاملEcg Signal Classification Using Ensemble Decision Tree
The electrocardiogram (ECG) is a non-invasive method to measure and record the electrical activity of the heart. ECG signal analysis has an important role on the diagnosis of heart diseases especially, abnormal or irregular heartbeats, namely arrhythmia. There are three basic waves; P, QRS and T in healthy EGC signal. The detection of these waves and time domain morphological properties represe...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 18 شماره 4
صفحات 2600- 2600
تاریخ انتشار 2022-12
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023