Fabrication of Chitosan-Polyethylene Oxide Electrospun Nanofibrous Mats Containing Green Tea Extract
نویسندگان
چکیده مقاله:
Novel electrospun nanofibrous CS-PEO nerve conduits containing 0, 2.5 and 5% of green tea methanolic extract were developed and characterized by FE-SEM, FT-IR, TGA/DSC as well as tensile strength analysis. The FE-SEM images revealed that all of the nanofibers had an average diameter of ∼80nm. The swelling degree was decreased by increasing the GT amount from 2.5 to 5% and this might be attributed to the enhanced interactions of the NH2, C(O)NH2 and OH groups of chitosan and PEO polymers with the OH groups of GT leading to a less hydrophilic mat surface, thus reducing the attraction by the aqueous medium. Moreover, the swelling was the highest in acidic medium but it was decreased in the neutral environment and it had the least value within the alkaline medium. The CS-PEO-5%GT exhibited the highest antibacterial activity among three samples examined against both S. aureus and E. coli microorganisms. The CS-PEO-5%GT was proved to be a very suitable candidate to be used as nerve conduit due to its improved tensile and antibacterial activities.
منابع مشابه
Electrospun Polyethylene Oxide / Cellulose Nanocrystal Composite 2 Nanofibrous Mats with Homogeneous and Heterogeneous
25 Electrospinning of polymer solutions or melts driven by a high26 voltage electric charge is a highly versatile technique that can be used 27 to generate continuous 1D polymeric fibers with diameters rang28 ing from several micrometers to tens of nanometers. Electrospun 29 nanofibrous materials possess a variety of interesting characteristics 30 such as small dimension, large specific surface...
متن کاملVarious parameters in the preparation of chitosan/polyethylene oxide electrospun nanofibers containing Aloe vera extract for medical applications
Objective(s): The present study aimed to fabricate chitosan/polyethylene oxide (CS/PEO) electrospun nanofibers loaded with Aloe vera extract for biomedical applications. The polymer-to-extract ratio and electrospinning parameters (applied voltage and nozzle-to-collector distance) were evaluated in order to optimize the process of nanofiber fabrication. Materials and Methods: The character...
متن کاملFabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide.
Chitosan is an abundantly common, naturally occurring, polysaccharide biopolymer. Its biocompatible, biodegradable, and antimicrobial properties have led to significant research toward biological applications such as drug delivery, artificial tissue scaffolds for functional tissue engineering, and wound-healing dressings. For applications such as tissue scaffolding, formation of highly porous m...
متن کاملFacile and green fabrication of electrospun poly(vinyl alcohol) nanofibrous mats doped with narrowly dispersed silver nanoparticles
Submicrometer-scale poly(vinyl alcohol) (PVA) nanofibrous mats loaded with aligned and narrowly dispersed silver nanoparticles (AgNPs) are obtained via the electrospinning process from pure water. This facile and green procedure did not need any other chemicals or organic solvents. The doped AgNPs are narrowly distributed, 4.3±0.7 nm and their contents on the nanofabric mats can be easily tuned...
متن کاملBlack Tea Extract Mediated Green Synthesis of Copper Oxide Nanoparticles
Copper oxide nanoparticles were synthesized using black tea extract and copper nitrate as thecopper source by the green method at different calcination temperatures. This method has manyadvantages such as nontoxic, economic viability, ease to scale up, less time consuming andenvironmental friendly approach for the synthesis of CuO nanoparticles without using any organicchemicals. The synthesize...
متن کاملPhysical-chemical properties of cross-linked chitosan electrospun fiber mats
Chitosan fiber mats were successfully processed by electrospinning. The as-spun fiber mats were neutralized with ethanol and cross-linked with glutaraldehyde. A decrease of the fiber average diameter from 243 ± 43 nm down to 215.53 nm was observed for the neutralized and cross-linking chitosan membrane. It was found that the processing conditions do not alter the initial deacetylation degree of...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 15 شماره 2
صفحات 65- 77
تاریخ انتشار 2018-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023