Extracting the Hidden Patterns Affecting Mental Health through Data Mining Techniques

نویسندگان

  • Asal Aghadavodian Jolfaee Dept. of Management and Health Information Technology, Isfahan University of Medical Sciences, Isfahan, Iran
  • Maryam Jahanbakhsh Health Information Technology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
  • Mohammad Sattari Health Information Technology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
  • Roya Kelishadi Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده مقاله:

Background and Objective: This study was conducted to shed light on the hidden relationships, trends, and patterns of the teenagers’ mental health dataset based on data mining techniques. Materials and Methods: The proposed method has four parts as follows: data preprocessing, data cleaning, target class selection, and extracting rules. The classes included inappropriate, moderate, and acceptable. The rules were extracted separately by implementing ID3, CHAID, and rule induction on the Caspian 5 dataset. Results: It was found that the teenagers who rarely drink carbonated soda and have dinner seven days a week, have acceptable status of mental health. Besides, watching TV and playing computer games for 4 hours or more per week, drinking tea and packaged juices, eating cakes, cookies, pastries, biscuits, and chocolate weekly  could lead to inappropriate status of  mental health. Conclusion: An attempt to improve health especially in youth is one of the important concerns of every country.  The rules express the negative impact of soda on mental health. Besides, it can be concluded that there is a direct relationship between having breakfast and mental health.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Prediction of chronic kidney disease in Isfahan with extracting association rules using data mining techniques

Background: Millions of deaths occur around the world each year due to lack of access to appropriate treatment for chronic kidney disease patients. Given the importance and mortality rate of this disease, early and low-cost prediction is very important. The researchers intend to identify chronic kidney disease through the optimal combination of techniques used in different stages of data mining...

متن کامل

applying data mining techniques to extract hidden patterns about breast cancer survival in an iranian cohort study

background : breast cancer survival has been analyzed by many standard data mining algorithms. a group of these algorithms belonged to the decision tree category. ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied...

متن کامل

Extraction of Drug Crime Patterns and Identifying People at Risk Using Data Mining Techniques

Introduction: In recent years, technology advancement and the growth of information technology in organizations have provided a huge source of data stored in the field of drug-related offenses. Analyzing these data and discovering hidden patterns in it can help detect and prevent the occurrence of crimes in this area. This paper aimed to identify the susceptible people to drug trafficking in Si...

متن کامل

Extraction of Drug Crime Patterns and Identifying People at Risk Using Data Mining Techniques

Introduction: In recent years, technology advancement and the growth of information technology in organizations have provided a huge source of data stored in the field of drug-related offenses. Analyzing these data and discovering hidden patterns in it can help detect and prevent the occurrence of crimes in this area. This paper aimed to identify the susceptible people to drug trafficking in Si...

متن کامل

Ex-ray: Data mining and mental health

Machine learning techniques such as support vector machines are applied to a text classification task to determine mental health problems. Inputs are transcribed speech samples from a ‘‘structured-narrative task’’ and outputs are psychiatric categories such as schizophrenia. In a preliminary trial, subjects from three groups generated speech samples: those with clinically diagnosed schizophreni...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 30  شماره None

صفحات  281- 288

تاریخ انتشار 2022-05

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023