Extermal trees with respect to some versions of Zagreb indices via majorization
نویسندگان
چکیده مقاله:
The aim of this paper is using the majorization technique to identify the classes of trees with extermal (minimal or maximal) value of some topological indices, among all trees of order n ≥ 12
منابع مشابه
Chemical Trees with Extreme Values of Zagreb Indices and Coindices
We give sharp upper bounds on the Zagreb indices and lower bounds on the Zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.
متن کاملMultiplicative Zagreb Indices of Trees
Let G be a graph with vertex set V (G) and edge set E(G) . The first and second multiplicative Zagreb indices of G are Π1 = ∏ x∈V (G) deg(x) 2 and Π2 = ∏ xy∈E(G) deg(x) deg(y) , respectively, where deg(v) is the degree of the vertex v . Let Tn be the set of trees with n vertices. We determine the elements of Tn , extremal w.r.t. Π1 and Π2 . AMS Mathematics Subject Classification (2000): 05C05, ...
متن کاملMultiplicative Zagreb indices of k-trees
Let G be a graph with vetex set V (G) and edge set E(G). The first generalized multiplicative Zagreb index of G is ∏ 1,c(G) = ∏ v∈V (G) d(v) , for a real number c > 0, and the second multiplicative Zagreb index is ∏ 2(G) = ∏ uv∈E(G) d(u)d(v), where d(u), d(v) are the degrees of the vertices of u, v. The multiplicative Zagreb indices have been the focus of considerable research in computational ...
متن کاملComputing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملLeap Zagreb indices of trees and unicyclic graphs
By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...
متن کاملOn the Multiplicative Zagreb Indices of Bucket Recursive Trees
Bucket recursive trees are an interesting and natural generalization of ordinary recursive trees and have a connection to mathematical chemistry. In this paper, we give the lower and upper bounds for the moment generating function and moments of the multiplicative Zagreb indices in a randomly chosen bucket recursive tree of size $n$ with maximal bucket size $bgeq1$. Also, we consi...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 4
صفحات 391- 401
تاریخ انتشار 2017-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023